Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

Overview

MetaAdaptRank

This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision.

CONTACT

For any question, please contact Si Sun by email [email protected] (respond to emails more quickly), we will try our best to solve :)

QUICKSTART

python 3.7
Pytorch 1.5.0

0/ Data Preparation

First download and prepare the following data into the data folder:

1 Contrastive Supervision Synthesis

1.1 Source-domain NLG training

  • We train two query generators (QG & ContrastQG) with the MS MARCO dataset using train_nlg.sh in the run_shells folder:

    bash prepro_nlg_dataset.sh
    
  • Optional arguments:

    --generator_mode            choices=['qg', 'contrastqg']
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --train_file                The path to the source-domain nlg training dataset
    --save_dir                  The path to save the checkpoints data; default: ../results
    

1.2 Target-domain NLG inference

  • The whole nlg inference pipline contains five steps:

    • 1.2.1/ Data preprocess
    • 1.2.2/ Seed query generation
    • 1.2.3/ BM25 subset retrieval
    • 1.2.4/ Contrastive doc pairs sampling
    • 1.2.5/ Contrastive query generation
  • 1.2.1/ Data preprocess. convert target-domain documents into the nlg format using prepro_nlg_dataset.sh in the preprocess folder:

    bash prepro_nlg_dataset.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --input_path            The path to the target dataset
    --output_path           The path to save the preprocess data; default: ../data/prepro_target_data
    
  • 1.2.2/ Seed query generation. utilize the trained QG model to generate seed queries for each target documents using nlg_inference.sh in the run_shells folder:

    bash nlg_inference.sh
    
  • Optional arguments:

    --generator_mode            choices='qg'
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --target_dataset_name       choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_load_dir        The path to the pretrained QG checkpoints.
    
  • 1.2.3/ BM25 subset retrieval. utilize BM25 to retrieve document subset according to the seed queries using do_subset_retrieve.sh in the bm25_retriever folder:

    bash do_subset_retrieve.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_folder      choices=['t5-small', 't5-base']
    
  • 1.2.4/ Contrastive doc pairs sampling. pairwise sample contrastive doc pairs from the BM25 retrieved subset using sample_contrast_pairs.sh in the preprocess folder:

    bash sample_contrast_pairs.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_folder      choices=['t5-small', 't5-base']
    
  • 1.2.5/ Contrastive query generation. utilize the trained ContrastQG model to generate new queries based on contrastive document pairs using nlg_inference.sh in the run_shells folder:

    bash nlg_inference.sh
    
  • Optional arguments:

    --generator_mode            choices='contrastqg'
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --target_dataset_name       choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_load_dir        The path to the pretrained ContrastQG checkpoints.
    

2 Meta Learning to Reweight

2.1 Data Preprocess

  • Prepare the contrastive synthetic supervision data (CTSyncSup) into the data/synthetic_data folder.

    • CTSyncSup_clueweb09
    • CTSyncSup_robust04
    • CTSyncSup_trec-covid

    >> example data format

  • Preprocess the target-domain datasets into the 5-fold cross-validation format using run_cv_preprocess.sh in the preprocess folder:

    bash run_cv_preprocess.sh
    
  • Optional arguments:

    --dataset_class         choices=['clueweb09', 'robust04', 'trec-covid']
    --input_path            The path to the target dataset
    --output_path           The path to save the preprocess data; default: ../data/prepro_target_data
    

2.2 Train and Test Models

  • The whole process of training and testing MetaAdaptRank contains three steps:

    • 2.2.1/ Meta-pretraining. The model is trained on synthetic weak supervision data, where the synthetic data are reweighted using meta-learning. The training fold of the target dataset is considered as target data that guides meta-reweighting.

    • 2.2.2/ Fine-tuning. The meta-pretrained model is continuously fine-tuned on the training folds of the target dataset.

    • 2.2.3/ Ensemble and Coor-Ascent. Coordinate Ascent is used to combine the last representation layers of all fine-tuned models, as LeToR features, with the retrieval scores from the base retriever.

  • 2.2.1/ Meta-pretraining using train_meta_bert.sh in the run_shells folder:

    bash train_meta_bert.sh
    

    Optional arguments for meta-pretraining:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --train_dir             The path to the synthetic weak supervision data
    --target_dir            The path to the target dataset
    --save_dir              The path to save the output files and checkpoints; default: ../results
    

    Complete optional arguments can be seen in config.py in the scripts folder.

  • 2.2.2/ Fine-tuning using train_metafine_bert.sh in the run_shells folder:

    bash train_metafine_bert.sh
    

    Optional arguments for fine-tuning:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --train_dir             The path to the target dataset
    --checkpoint_folder     The path to the checkpoint of the meta-pretrained model
    --save_dir              The path to save output files and checkpoint; default: ../results
    
  • 2.2.3/ Testing the fine-tuned model to collect LeToR features through test.sh in the run_shells folder:

    bash test.sh
    

    Optional arguments for testing:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --target_dir            The path to the target evaluation dataset
    --checkpoint_folder     The path to the checkpoint of the fine-tuned model
    --save_dir              The path to save output files and the **features** file; default: ../results
    
  • 2.2.4/ Ensemble. Train and test five models for each fold of the target dataset (5-fold cross-validation), and then ensemble and convert their output features to coor-ascent format using combine_features.sh in the ensemble folder:

    bash combine_features.sh
    

    Optional arguments for ensemble:

    --qrel_path             The path to the qrels of the target dataset
    --result_fold_1         The path to the testing result folder of the first fold model
    --result_fold_2         The path to the testing result folder of the second fold model
    --result_fold_3         The path to the testing result folder of the third fold model
    --result_fold_4         The path to the testing result folder of the fourth fold model
    --result_fold_5         The path to the testing result folder of the fifth fold model
    --save_dir              The path to save the ensembled `features.txt` file; default: ../combined_features
    
  • 2.2.5/ Coor-Ascent. Run coordinate ascent using run_ranklib.sh in the ensemble folder:

    bash run_ranklib.sh
    

    Optional arguments for coor-ascent:

    --qrel_path             The path to the qrels of the target dataset
    --ranklib_path          The path to the ensembled features.
    

    The final evaluation results will be output in the ranklib_path.

Results

All TREC files listed in this paper can be found in Tsinghua Cloud.

You might also like...
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

Learning trajectory representations using self-supervision and programmatic supervision.
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

 Few-NERD: Not Only a Few-shot NER Dataset
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

Codes for ACL-IJCNLP 2021 Paper
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

Data and Code for ACL 2021 Paper
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 2, 2023
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 7, 2022
WRENCH: Weak supeRvision bENCHmark

?? What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
WRENCH: Weak supeRvision bENCHmark

?? What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

null 220 Dec 31, 2022