Introduction
This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.
Modified from mmclassification.
Support 3D ResNet pre-training with 2D natural-image dataset.
Installation
Please refer to install.md for installation.
Data preparation
Download ImageNet dataset and put as the following structure:
data
├──imagenet
├── get_meta.sh
├── meta
│ ├── val.txt
│ ├── test.txt
│ ├── train.txt
├── val
│ ├──ILSVRC2012_val_00000001.JPEG
│ ├──ILSVRC2012_val_00000002.JPEG
│ ├── ...
├── test
│ ├──ILSVRC2012_test_00000001.JPEG
│ ├──ILSVRC2012_test_00000002.JPEG
│ ├── ...
└── train
└── n10148035
│ ├── n10148035_10034.JPEG
│ ├── n10148035_10371.JPEG
│ ├── ...
└── n11879895
│ ├── ...
└── ...
Pre-train a 3D model on ImageNet dataset
Run this script to pre-train a 3D-ResNet-18 model on ImageNet dataset. It will take around 7 days on 8 Titan XP GPUs.
bash pre_train.sh
Pre-trained Model
We provide models pre-trained on ImageNet dataset which can be used for different 3D medical image analysis tasks.
The pre-trained 3D-ResNet-18 model can be downloaded from Google drive or BaiduYun(verification code: 9hgg).