ASTR 302: Python for Astronomy (Winter '22)

Overview

ASTR 302, Winter 2022, University of Washington:

Python for Astronomy

Mario Jurić

Location

  • When: 2:30-3:50, Monday & Wednesday, Winter quarter 2022
  • Where: PAA 216

Class Materials

Useful Textbooks

We will largely rely on material freely available on the web; however, these two books may be useful for a more in-depth dive:

(note: both are freely available as e-books through UW University Libraries).

Class Description

ASTR 302, “Python for Astronomy”, is a course designed to teach how to effectively use Python for research and astronomical data analysis. We will begin with a gentle introduction to key tools and libraries used in astronomy, use these to analyze data (from kilobytes to tens of gigabytes!), visualize (sometimes large) datasets, automate analyses, and apply what we’ve learned to reproduce results of some key astronomy papers.

This course assumes you know basic Python and related astronomy libraries at the ASTR 300 level. It will give you the broad foundation needed to proceed to “ASTR 324: Introduction to Astrostatistics and Machine Learning in Astronomy”, or ASTR 497 “Big Data in Astronomy: Hands-on with Large Surveys”, or independent research projects.

You might also like...
Fast, flexible and easy to use probabilistic modelling in Python.
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Statistical package in Python based on Pandas
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

A Python package for the mathematical modeling of infectious diseases via compartmental models
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenario.

Owner
UW ASTR 302: Python for Astronomy
GitHub organization supporting the UW Python for Astronomy course
UW ASTR 302: Python for Astronomy
Business Intelligence (BI) in Python, OLAP

Open Mining Business Intelligence (BI) Application Server written in Python Requirements Python 2.7 (Backend) Lua 5.2 or LuaJIT 5.1 (OML backend) Mong

Open Mining 1.2k Dec 27, 2022
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Jan 3, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 9, 2023
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
ForecastGA is a Python tool to forecast Google Analytics data using several popular time series models.

ForecastGA is a tool that combines a couple of popular libraries, Atspy and googleanalytics, with a few enhancements.

JR Oakes 36 Jan 3, 2023
Multiple Pairwise Comparisons (Post Hoc) Tests in Python

scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal

Maksim Terpilowski 264 Dec 30, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

null 2.7k Jan 3, 2023
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

null 7.7k Dec 30, 2022