Multi-View Radar Semantic Segmentation

Related tags

Deep Learning MVRSS
Overview

Multi-View Radar Semantic Segmentation

Paper

teaser_schema

Multi-View Radar Semantic Segmentation, ICCV 2021.

Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Florence Tupin, Julien Rebut

This repository groups the implemetations of the MV-Net and TMVA-Net architectures proposed in the paper of Ouaknine et al..

The models are trained and tested on the CARRADA dataset.

The CARRADA dataset is available on Arthur Ouaknine's personal web page at this link: https://arthurouaknine.github.io/codeanddata/carrada.

If you find this code useful for your research, please cite our paper:

@misc{ouaknine2021multiview,
      title={Multi-View Radar Semantic Segmentation},
      author={Arthur Ouaknine and Alasdair Newson and Patrick Pérez and Florence Tupin and Julien Rebut},
      year={2021},
      eprint={2103.16214},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Installation with Docker

It is strongly recommanded to use Docker with the provided Dockerfile containing all the dependencies.

  1. Clone the repo:
$ git clone https://github.com/ArthurOuaknine/MVRSS.git
  1. Create the Docker image:
$ cd MVRSS/
$ docker build . -t "mvrss:Dockerfile"

Note: The CARRADA dataset used for train and test is considered as already downloaded by default. If it is not the case, you can uncomment the corresponding command lines in the Dockerfile or follow the guidelines of the dedicated repository.

  1. Run a container and join an interactive session. Note that the option -v /host_path:/local_path is used to mount a volume (corresponding to a shared memory space) between the host machine and the Docker container and to avoid copying data (logs and datasets). You will be able to run the code on this session:
$ docker run -d --ipc=host -it -v /host_machine_path/datasets:/home/datasets_local -v /host_machine_path/logs:/home/logs --name mvrss --gpus all mvrss:Dockerfile sleep infinity
$ docker exec -it mvrss bash

Installation without Docker

You can either use Docker with the provided Dockerfile containing all the dependencies, or follow these steps.

  1. Clone the repo:
$ git clone https://github.com/ArthurOuaknine/MVRSS.git
  1. Install this repository using pip:
$ cd MVRSS/
$ pip install -e .

With this, you can edit the MVRSS code on the fly and import function and classes of MVRSS in other project as well.

  1. Install all the dependencies using pip and conda, please take a look at the Dockerfile for the list and versions of the dependencies.

  2. Optional. To uninstall this package, run:

$ pip uninstall MVRSS

You can take a look at the Dockerfile if you are uncertain about steps to install this project.

Running the code

In any case, it is mandatory to specify beforehand both the path where the CARRADA dataset is located and the path to store the logs and models. Example: I put the Carrada folder in /home/datasets_local, the path I should specify is /home/datasets_local. The same way if I store my logs in /home/logs. Please run the following command lines while adapting the paths to your settings:

$ cd MVRSS/mvrss/utils/
$ python set_paths.py --carrada /home/datasets_local --logs /home/logs

Training

In order to train a model, a JSON configuration file should be set. The configuration file corresponding to the selected parameters to train the TMVA-Net architecture is provided here: MVRSS/mvrss/config_files/tmvanet.json. To train the TMVA-Net architecture, please run the following command lines:

$ cd MVRSS/mvrss/
$ python train.py --cfg config_files/tmvanet.json

If you want to train the MV-Net architecture (baseline), please use the corresponding configuration file: mvnet.json.

Testing

To test a recorded model, you should specify the path to the configuration file recorded in your log folder during training. Per example, if you want to test a model and your log path has been set to /home/logs, you should specify the following path: /home/logs/carrada/tmvanet/name_of_the_model/config.json. This way, you should execute the following command lines:

$ cd MVRSS/mvrss/
$ python test.py --cfg /home/logs/carrada/tmvanet/name_of_the_model/config.json

Note: the current implementation of this script will generate qualitative results in your log folder. You can disable this behavior by setting get_quali=False in the parameters of the predict() method of the Tester() class.

Acknowledgements

License

The MVRSS repo is released under the Apache 2.0 license.

You might also like...
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

 Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation
Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation

Multi-atlas segmentation (MAS) is a promising framework for medical image segmentation. Generally, MAS methods register multiple atlases, i.e., medical images with corresponding labels, to a target image;

Comments
  • Sensor set up

    Sensor set up

    Hi, in the paper section 2.1 Automotive radar sensing, you say that -

    With conventional FMCW radars the RAD tensor is usually not available as it is too computing intensive to estimate.

    so what is difference between conventional FMCW and others FMCW radar?

    In addition, what CARRADA dataset camera and radar sensor setup? and the network cost time (ms) is possible to on-road online?

    Thanks you, hope you can give me some advice.

    opened by enting8696 1
  • metrics calculation on some frames without foreground pixels

    metrics calculation on some frames without foreground pixels

    Hi, I have a question about the calculation of some metrics including IoU, DICE, precision, and recall. In your codes I think you add all frames' confusion matrix together to have the metrics you want. But I found that the dataset contains some frames without any foreground pixels, for example:

    Screen Shot 2021-07-16 at 9 53 27 PM

    The frame without foreground pixel will give a 0 value for the above metrics. So I am afraid the performance of the model is actually underestimated. I wonder if it is more reasonable to exclude frames without the foreground pixel?

    opened by james20141606 1
  • test results.

    test results.

    Thanks for your great work. When I use your pretrained weight in test.py. I can only get mIoU 58.2 in test_result.json file and 12 percentage points worse than the metrics in the result.json file. Can you help me with the confusion?

    opened by sutiankang 0
Releases(v0.1)
Owner
valeo.ai
We are an international team based in Paris, conducting AI research for Valeo automotive applications, in collaboration with world-class academics.
valeo.ai
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 9, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 1, 2023
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

null 32 Sep 21, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

null 63 Dec 16, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 4, 2023
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 4, 2023
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 4, 2023