Causal Imitative Model for Autonomous Driving

Related tags

Deep Learning CIM
Overview

Causal Imitative Model for Autonomous Driving


Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021.
[Project Website]       [Paper]


This repo provides implementations of Causal Imitative Model (CIM). The idea is to explicitly discover the causal model of environment and utilize it to improve the autonomous driving system. All code is written in Python 3, using PyTorch, NumPy, and CARLA.

The project is built on OATomobile, a framework for autonomous driving research which wraps CARLA in OpenAI gym environments. The main part of our contribution is gathered in oatomobile\baselines\torch\cim.

Installation

To install requirements, refer to OATomobile github repo.

How to run

Train the perception model

To train the perception model, you would run with

python -m oatomobile.baselines.torch.cim.perception.train --dataset_dir=dataset_dir --output_dir=output_dir --in_channels=1 --num_epochs=num_epochs --beta=6

Train the speed predictor

After training the perception model and obtaining representations of scenarios' observations, you could train the speed predictor with

python -m oatomobile.baselines.torch.cim.predictor.train --dataset_dir=dataset_dir --output_dir=output_dir --num_epochs=num_epochs

Run a navigation task

To perform the model on a task:

python -m test --task=task --model_dir=model_dir --predictor_dir=predictor_dir --output_dir=output_dir --alpha=alpha --gamma=gamma

BibTeX

If you find this code useful, please cite:

@misc{samsami2021causal,
   title={Causal Imitative Model for Autonomous Driving}, 
   author={Mohammad Reza Samsami and Mohammadhossein Bahari and Saber Salehkaleybar and Alexandre Alahi},
   year={2021},
   eprint={2112.03908},
   archivePrefix={arXiv},
   primaryClass={cs.RO}
}

Acknowledgements

This code was developed using OATomobile and disentanglement_lib.

You might also like...
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Unofficial PyTorch implementation of
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone [email protected]

CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

null 71 Nov 29, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

null 695 Jan 5, 2023
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

null 308 Jan 4, 2023
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

null 148 Dec 28, 2022
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

null 254 Jan 2, 2023
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 4, 2021
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 5, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022