Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

Related tags

Deep Learning quince
Overview

🍐 quince

Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

Image of Gamma Sweep

🍐 Installation

$ git clone [email protected]:anndvision/quince.git
$ cd quince
$ conda env create -f environment.yml
$ conda activate quince

🍐 Example: Replicating IHDP results

Step 1: Hyperparameter Tuning (optional)

Find the best hyperparameters using the tune function, on a dataset like ihdp for an ensemble model.

$ quince \
    tune \
        --job-dir ~/experiments/quince/tuning/ \
        --max-samples 500 \
        --gpu-per-trial 0.2 \
    ihdp \
    ensemble

Step 2: Train ensembles over a number of trials

Here, we use the train function to fit an ensemble of mixture density networks on 10 realizations of the ihdp with hidden confounding dataset. For the full results change --num-trials 1000

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 10 \
        --gpu-per-trial 0.2 \
    ihdp \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 4 \
        --negative-slope 0.3 \
        --dropout-rate 0.5 \
        --spectral-norm 6.0 \
        --learning-rate 5e-4 \
        --batch-size 200 \
        --epochs 500 \
        --ensemble-size 10

Step 3: Evaluate

Plots will be written to the experiment-dir

$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/ihdp/hc-True_beta-None/ensemble/dh-200_nc-5_dp-4_ns-0.3_dr-0.5_sn-6.0_lr-0.0005_bs-200_ep-500/ \
    compute-intervals \
        --gpu-per-trial 0.2 \
    compute-intervals-kernel \
        --gpu-per-trial 0.2 \
    plot-deferral \
    plot-errorbars \
        --trial 0

🍐 Replicating Other Results

Simulated Data

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 50 \
        --gpu-per-trial 0.2 \
    synthetic \
        --gamma-star 1.65 \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 4 \
        --negative-slope 0.0 \
        --dropout-rate 0.1 \
        --spectral-norm 6.0 \
        --learning-rate 1e-3 \
        --batch-size 32 \
        --epochs 500 \
        --ensemble-size 10
$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/synthetic/ne-1000_gs-1.65_th-4.00_be-0.75_si-1.00_dl-2.00/ensemble/dh-200_nc-5_dp-4_ns-0.0_dr-0.1_sn-6.0_lr-0.001_bs-32_ep-500/ \
    compute-intervals \
        --gpu-per-trial 0.2 \
    compute-intervals-kernel \
        --gpu-per-trial 0.2 \
    plot-ignorance \
    print-summary \
    print-summary-kernel \
    paired-t-test

Repeat the above for --gamma-star 2.72 and --gamma-star 4.48.

HCMNIST

$ quince \
    train \
        --job-dir ~/experiments/quince/ \
        --num-trials 20 \
        --gpu-per-trial 0.5 \
    hcmnist \
        --gamma-star 1.65 \
    ensemble \
        --dim-hidden 200 \
        --num-components 5 \
        --depth 2 \
        --negative-slope 0.0 \
        --dropout-rate 0.15 \
        --spectral-norm 3.0 \
        --learning-rate 5e-4 \
        --batch-size 200 \
        --epochs 500 \
        --ensemble-size 5
$ quince \
    evaluate \
        --experiment-dir ~/experiments/quince/hcmnist/gs-1.65_th-4.00_be-0.75_si-1.00_dl-2.00/ensemble/dh-200_nc-5_dp-2_ns-0.0_dr-0.15_sn-3.0_lr-0.0005_bs-200_ep-500/ \
    compute-intervals \
        --gpu-per-trial 1.0 \
    print-summary

Repeat the above for --gamma-star 2.72 and --gamma-star 4.48.

You might also like...
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

PyTorch implementations of the paper:
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias
[CVPR 2021] Counterfactual VQA: A Cause-Effect Look at Language Bias

Counterfactual VQA (CF-VQA) This repository is the Pytorch implementation of our paper "Counterfactual VQA: A Cause-Effect Look at Language Bias" in C

Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

an implementation of 3D Ken Burns Effect from a Single Image using PyTorch
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Official repository of the paper
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Owner
Andrew Jesson
PhD in Machine Learning at University of Oxford @OATML
Andrew Jesson
LBK 26 Dec 28, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Phil Wang 272 Dec 23, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Code for "Causal autoregressive flows" - AISTATS, 2021

Code for "Causal Autoregressive Flow" This repository contains code to run and reproduce experiments presented in Causal Autoregressive Flows, present

Ricardo Pio Monti 35 Dec 16, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 1, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introduce a general-purpose deep learning architecture that takes as input the entire dataset instead of processing one datapoint at a time.

OATML 360 Dec 28, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 3, 2023