This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

Related tags

Deep Learning silg
Overview

SILG

This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please consider citing this work:

@inproceedings{ zhong2021silg,
  title={ {SILG}: The Multi-environment Symbolic InteractiveLanguage Grounding Benchmark },
  author={ Victor Zhong and Austin W. Hanjie and Karthik Narasimhan and Luke Zettlemoyer },
  booktitle={ NeurIPS },
  year={ 2021 }
}

Please also consider citing the individual tasks included in SILG. They are RTFM, Messenger, NetHack Learning Environment, AlfWorld, and Touchdown.

RTFM

RTFM

Messenger

Messenger

SILGNethack

SILGNethack

ALFWorld

ALFWorld

SILGSymTouchdown

SILGSymTouchdown

How to install

You have to install the individual environments in order for SILG to work. The GitHub repository for each environment are found at

Our dockerfile also provides an example of how to install the environments in Ubuntu. You can also try using our install_envs.sh, which has only been tested in Ubuntu and MacOS.

bash install_envs.sh

Once you have installed the individual environments, install SILG as follows

pip install -r requirements.txt
pip install -e .

Some environments have (potentially a large quantity of) data files. Please download these via

bash download_env_data.sh  # if you do not want to use VisTouchdown, feel free to comment out its very large feature file

As a part of this download, we will symlink a ./cache directory from ./mycache. SILG environments will pull data files from this directory. If you are on NFS, you might want to move mycache to local disk and then relink the cache directory to avoid hitting NFS.

Docker

We provide a Docker container for this project. You can build the Docker image via docker build -t vzhong/silg . -f docker/Dockerfile. Alternatively you can pull my build from docker pull vzhong/silg. This contains the environments as well as SILG, but doesn't contain the large data download. You will still have to download the environment data and then mount the cache folder to the container. You may need to specify --platform linux/amd64 to Docker if you are running a M1 Mac.

Because some of the environments require that you install them first before downloading their data files, you want to download using the Docker container as well. You can do

docker run --rm --user "$(id -u):$(id -g)" -v $PWD/download_env_data.sh:/opt/silg/download_env_data.sh -v $PWD/mycache:/opt/silg/cache vzhong/silg bash download_env_data.sh

Once you have downloaded the environment data, you can use the container by doing something like

docker run --rm --user "$(id -u):$(id -g)" -it -v $PWD/mycache:/opt/silg/cache vzhong/silg /bin/bash

Visualizing environments

We provide a script to play SILG environments in the terminal. You can access it via

silg_play --env silg:rtfm_train_s1-v0  # use -h to see options

# docker variant
docker run --rm -it -v $PWD/mycache:/opt/silg/cache vzhong/silg silg_play --env silg:rtfm_train_s1-v0

These recordings are shown at the start of this document and are created using asciinema.

How to run experiments

The entrypoint to experiments is run_exp.py. We provide a slurm script to run experiments in launch.py. These scripts can also run jobs locally (e.g. without slurm). For example, to run RTFM:

python launch.py --local --envs rtfm

You can also log to WanDB with the --wandb option. For more, use the -h flag.

How to add a new environment

First, create a wrapper class in silg/envs/ .py . This wrapper will wrap the real environment and provide APIs used by the baseline models and the training script. silg/envs/rtfm.py contains an example of how to do this for RTFM. Once you have made the wrapper, don't forget to include its file in silg/envs/__init__.py.

The wrapper class must subclass silg.envs.base.SILGEnv and implement:

# return the list of text fields in the observation space
def get_text_fields(self):
    ...

# return max number of actions
def get_max_actions(self):
    ...

# return observation space
def get_observation_space(self):
    ...

# resets the environment
def my_reset(self):
    ...

# take a step in the environment
def my_step(self, action):
    ...

Additionally, you may want to implemnt rendering functions such as render_grid, parse_user_action, and get_user_actions so that it can be played with silg_play.

Note There is an implementation detail right now in that the Torchbeast code considers a "win" to be equivalent to the environment returning a reward >0.8. We hope to change this in the future (likely by adding another tensor field denoting win state) but please keep this in mind when implementing your environment. You likely want to keep the reward between -1 and +1, which high rewards >0.8 reserved for winning if you would like to use the training code as-is.

Changelog

Version 1.0

Initial release.

You might also like...
This repository contains the source code of our work on designing efficient CNNs for computer vision
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Code and data for ImageCoDe, a contextual vison-and-language benchmark
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Open source code for Paper
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.
This repo contains the official code of our work SAM-SLR which won the CVPR 2021 Challenge on Large Scale Signer Independent Isolated Sign Language Recognition.

Skeleton Aware Multi-modal Sign Language Recognition By Songyao Jiang, Bin Sun, Lichen Wang, Yue Bai, Kunpeng Li and Yun Fu. Smile Lab @ Northeastern

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

Comments
  • Confused about the word Embodied

    Confused about the word Embodied

    Hi

    It's a great pleasure to read your paper!

    I am very confused by several definitions of concepts surrounding Embodied:

    1. Does the Symbolic Interactive environment can be categorized as embodied environment?
    2. Does the agent ( in a Symbolic Interactive environment) can be called embodied agent?

    Clearly, ALFRED can be could an embodied environment. But, how about ALFWord which is the abstract environment of language, and RTFM which is a grid-world environment?

    Looking forward to your opinion

    opened by yipliu 0
Owner
Victor Zhong
I am a PhD student at the University of Washington. Formerly Salesforce Research / MetaMind, @stanfordnlp, and ECE at UToronto.
Victor Zhong
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 5, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

null 9 Nov 14, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

null 22 Dec 11, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022