NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

Related tags

Deep Learning NAC
Overview

NAC

Official PyTorch implementation of NAC from the paper:

Neural Auto-Curricula in Two-Player Zero-Sum Games.

We release code for: Gradient based oracle(Game of skills/2d-rps), Implicit gradient(2d-rps), RL(IMP) and ES based training for Kuhn-poker.

How to run

We set our hyperparameters in the python file so you just need to run model_train.py in the corresponding directory. We also offer our pretrain model for direct test.

We use wandb to log experimental results, you may need to register for an account before running the code.

How to test

Run test.py and you can check the comment in test.py for different test configurations.

2D-RPS visualization

123

Visualisation results can be tested in:

2d-rps-gradient/visualisation/visualization_2d_rps.ipynb.

Kuhn->Leduc Generalization

123

we provide a local implementation in which one can reproduce the results of generalising our models trained on Kuhn Poker to Leduc Poker.

cd leduc_poker
# To reproduce the approximate best-response results
python3 kuhn_to_leduc.py --br_type 'approx_br_rand'
# To reproduce the exact best-response results
python3 kuhn_to_leduc.py --br_type 'exact_br'

Cite

Please cite our paper if you use the code or datasets in your own work:

@article{feng2021NAC,
  title={Neural Auto-Curricula},
  author={Feng, Xidong and Slumbers, Oliver and Yang, Yaodong and Wan, Ziyu and Liu, Bo and McAleer, Stephen and Wen, Ying and Wang, Jun},
  journal={arXiv preprint arXiv:2106.02745},
  year={2021}
}
You might also like...
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Comments
  • Maybe a bug in visualisation utils

    Maybe a bug in visualisation utils

    https://github.com/waterhorse1/NAC/blob/dd355a9d53909470c7e26fb8a7ee7380ea2bb02a/2d-rps-gradient/visualisation/utils/best_responder.py#L104 I didn't deep into the code, but maybe a bug ? mus -> mu ? image

    opened by hejujie 3
Owner
Xidong Feng
Ph.D. student in University College London, interested in Meta Learning, Reinforcement Learning and Multi-agent Learning.
Xidong Feng
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

null 71 Dec 14, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 7, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

null 45 Dec 8, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Neural network chess engine trained on Gary Kasparov's games.

Neural Chess It's not the best chess engine, but it is a chess engine. Proof of concept neural network chess engine (feed-forward multi-layer perceptr

null 3 Jun 22, 2022
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022