Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

Related tags

Deep Learning SPN
Overview

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid, submitted to IEEE. Pretrained models have been uploaded.

This project is for our new inpainting method SPN which has been submitted to IEEE under peer review. This work is an extension version of our previous work SPL (IJCAI'21). If you have any questions, feel free to make issues. Thanks for your interests!

Paper on Arxiv. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

Introduction:

Briefly speaking, in this work, we still focus on the key insight that learning semantic priors from specific pretext tasks can benefit image inpainting, and we further strengthen the modeling of the learned priors in this work from the following aspects:

  1. We exploit multi-scale semantic priors in a feature pyramid manner to achieve consistent understanding of both gloabl and local context. The image generator is also improved to incorporate the prior pyramid.
  2. We extend our prior learned in a probabilistic manner which enables our method to handle probabilistic image inpainting problem.
  3. Besides, more analyses of the learned prior pyramid and the choices of the semantic supervision are provided in our experiment part.

Prerequisites (same with SPL)

  • Python 3.7
  • PyTorch 1.8 (1.6+ may also work)
  • NVIDIA GPU + CUDA cuDNN
  • Inplace_Abn (only needed for training our model, used in ASL_TRresNet model)
  • torchlight (We only use it to record the printed information. You can change it as you want.)

Datasets

We use Places2, CelebA and Paris Street-View datasets for determinstic image inpainting which is same with SPL, and CelebA-HQ dataset is used for probabilistic image inpainting. We also used the irregular mask provided by Liu et al. which can be downloaded from their website. For the detailed processes of these datasets please refer to SPL and our paper.

Getting Strated

Since our approach can be applied for both deterministic and probabilistic image inpainting, so we seperate the codes under these two setups in different files and each file contains corresponding training and testing commonds.

For all setups, the common pre-preparations are list as follows:

  1. Download the pre-trained models and copy them under ./checkpoints directory.

  2. (For training) Make another directory, e.g ./pretrained_ASL, and download the weights of TResNet_L pretrained on OpenImage dataset to this directory.

  3. Install torchlight

cd ./torchlight
python setup.py install
You might also like...
 Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022
TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation, CVPR2022

TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentation Paper Links: TopFormer: Token Pyramid Transformer for Mobile Semantic Segmentati

CVPR 2021:
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset. The pytorch implementation of the paper
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Owner
null
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

null 21 Nov 9, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

null 254 Dec 29, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

null 321 Dec 25, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA>=10.0,

null 29 Aug 23, 2022
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

null 9 Sep 1, 2022