Pneumonia Detection using machine learning - with PyTorch

Overview

Pneumonia Detection

Pneumonia Detection using machine learning.

Training was done in colab:

Training In Colab


DEMO:

gif

Result (Confusion Matrix):

confusion matrix

Data

I uploaded my dataset to kaggle I used a modified version of this dataset from kaggle. Instead of NORMAL and PNEUMONIA I split the PNEUMONIA dataset to BACTERIAL PNUEMONIA and VIRAL PNEUMONIA. This way the data is more evenly distributed and I can distinguish between viral and bacterial pneumonia. I also combined the validation dataset with the test dataset because the validation dataset only had 8 images per class.

This is the resulting distribution:

data distribution

Processing and Augmentation

I resized the images to 150x150 and because some images already were grayscale I also transformed all the images to grayscale.

Additionaly I applied the following transformations/augmentations on the training data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(45)

and those transformations on the test data:

transforms.Resize((150, 150)),
transforms.Grayscale(),
transforms.ToTensor(),

This is the resulting data:

sample images

I also used one-hot encoding for the labels!



Model

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 16, 148, 148]             160
              ReLU-2         [-1, 16, 148, 148]               0
       BatchNorm2d-3         [-1, 16, 148, 148]              32
            Conv2d-4         [-1, 16, 146, 146]           2,320
              ReLU-5         [-1, 16, 146, 146]               0
       BatchNorm2d-6         [-1, 16, 146, 146]              32
         MaxPool2d-7           [-1, 16, 73, 73]               0
            Conv2d-8           [-1, 32, 71, 71]           4,640
              ReLU-9           [-1, 32, 71, 71]               0
      BatchNorm2d-10           [-1, 32, 71, 71]              64
           Conv2d-11           [-1, 32, 69, 69]           9,248
             ReLU-12           [-1, 32, 69, 69]               0
      BatchNorm2d-13           [-1, 32, 69, 69]              64
        MaxPool2d-14           [-1, 32, 34, 34]               0
           Conv2d-15           [-1, 64, 32, 32]          18,496
             ReLU-16           [-1, 64, 32, 32]               0
      BatchNorm2d-17           [-1, 64, 32, 32]             128
           Conv2d-18           [-1, 64, 30, 30]          36,928
             ReLU-19           [-1, 64, 30, 30]               0
      BatchNorm2d-20           [-1, 64, 30, 30]             128
        MaxPool2d-21           [-1, 64, 15, 15]               0
           Conv2d-22          [-1, 128, 13, 13]          73,856
             ReLU-23          [-1, 128, 13, 13]               0
      BatchNorm2d-24          [-1, 128, 13, 13]             256
           Conv2d-25          [-1, 128, 11, 11]         147,584
             ReLU-26          [-1, 128, 11, 11]               0
      BatchNorm2d-27          [-1, 128, 11, 11]             256
        MaxPool2d-28            [-1, 128, 5, 5]               0
          Flatten-29                 [-1, 3200]               0
           Linear-30                 [-1, 4096]      13,111,296
             ReLU-31                 [-1, 4096]               0
          Dropout-32                 [-1, 4096]               0
           Linear-33                 [-1, 4096]      16,781,312
             ReLU-34                 [-1, 4096]               0
          Dropout-35                 [-1, 4096]               0
           Linear-36                    [-1, 3]          12,291
          Softmax-37                    [-1, 3]               0
================================================================
Total params: 30,199,091
Trainable params: 30,199,091
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.09
Forward/backward pass size (MB): 27.95
Params size (MB): 115.20
Estimated Total Size (MB): 143.24
----------------------------------------------------------------

Visualization using Streamlit

The webapp is not hosted because the model is too large. I'd have to host it on a server. This is just to visualize.

You might also like...
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and build their own methods.

Pose Detection and Machine Learning for real-time body posture analysis during exercise to provide audiovisual feedback on improvement of form.

Posture: Pose Tracking and Machine Learning for prescribing corrective suggestions to improve posture and form while exercising. This repository conta

Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

End-to-end machine learning project for rices detection
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Human Detection - Pedestrian Detection using OpenCV Python
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Owner
Wilhelm Berghammer
Artificial Intelligence Student @ JKU (1st year)
Wilhelm Berghammer
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 3, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 9, 2023
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 6, 2023
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

null 4 Nov 25, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022