DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation
By Qing Xu, Wenting Duan and Na He
Requirements
- pytorch==1.10.0
- pytorch-lightning==1.1.0
- albumentations==0.3.2
- seaborn
- sklearn
Dataset
To apply the model on a custom dataset, the data tree should be constructed as:
├── data
├── images
├── image_1.png
├── image_2.png
├── image_n.png
├── masks
├── image_1.png
├── image_2.png
├── image_n.png
CSV generation
python data_split_csv.py --dataset your/data/path --size 0.9
Train
python train.py --dataset your/data/path --csvfile your/csv/path --loss dice --batch 16 --lr 0.001 --epoch 150
Evaluation
python eval_binary.py --dataset your/data/path --csvfile your/csv/path --model save_models/epoch_last.pth --debug True