Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic
[Paper] [Colab is coming soon]
Approach
Example
Usage
To run captioning on a single image:
$ python run.py
--reset_context_delta
--caption_img_path "example_images/captions/COCO_val2014_000000097017.jpg"
To run model on visual arithmetic:
$ python run.py
--reset_context_delta
--end_factor 1.06
--fusion_factor 0.95
--grad_norm_factor 0.95
--run_type arithmetics
--arithmetics_imgs "example_images/arithmetics/woman2.jpg" "example_images/arithmetics/king2.jpg" "example_images/arithmetics/man2.jpg"
--arithmetics_weights 1 1 -1
To run model on real world knowledge:
$ python run.py
--reset_context_delta --cond_text "Image of"
--end_factor 1.04
--caption_img_path "example_images/real_world/simpsons.jpg"
To run model on OCR:
$ python run.py
--reset_context_delta --cond_text "Image of text that says"
--end_factor 1.04
--caption_img_path "example_images/OCR/welcome_sign.jpg"