Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Overview

Sequential-GAM

Pipeline code for Sequential-GAM(Genome Architecture Mapping).

mapping

whole_preprocess.sh include the whole processing of mapping.

usage: bash whole_preprocess.sh Cell_name

1.removing the adaptor by trim_galore

parameters are:

trim_galore -q 20 --stringency 3 --length 20 --nextera -o ${dir_out} -e 0.1 --gzip --paired ${dir_in}"Cleandata/"${fast1} ${dir_in}"Cleandata/"${fast2}

2.mapping reads by bowtie2

parameters are:

bowtie2 -p 10 -5 15 -x /home/ygli/index/CAST -1 B2F_NP1_R1.fq.gz -2 B2F_NP1_R2.fq.gz -S B2F_NP1_C.sam

3.removing duplicates with samtools and Picard Toolkit

parameters are:

samtools view -f 0x2 -bSB10F-NP252_S.sam > B10F-NP252_S.bam

samtools sort B10F-NP252_S.bam > B10F-NP252_S.sort.bam

samtools index B10F-NP252_S.sort.bam

java -jar /home/ygli/tools/picard.jar MarkDuplicates REMOVE_DUPLICATES=True I=B10F-NP252_C.sort.bam O=B10F-NP252_C.sort.remove_dump.bam M=B10F-NP252_C.sort.marked_dup_metrics.txt

capture table

1.calculating the capture or not for each window with given resolution (10kb in codes)

bash run_all_chromatin_calculate_mapped_chr_process.sh

2.merge capture situation in each cell into one table

bash calculate_merge_result_of_capture.sh

You might also like...
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Weighing Counts: Sequential Crowd Counting by Reinforcement Learning
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Synthetic LiDAR sequential point cloud dataset with point-wise annotations
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Locally Constrained Self-Attentive Sequential Recommendation
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Owner
null
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 8, 2023
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 1, 2022
Gapmm2: gapped alignment using minimap2 (align transcripts to genome)

gapmm2: gapped alignment using minimap2 This tool is a wrapper for minimap2 to r

Jon Palmer 2 Jan 27, 2022
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

null 39 Dec 17, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 3, 2023
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 5, 2023
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 4, 2023