mmdet_benchmark
本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。
配置与环境
机器配置
CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz
GPU:NVIDIA GeForce RTX 3080 10GB
内存:64G
硬盘:1TB NVME SSD
mmdet 环境
Python: 3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]
CUDA available: True
GPU 0: NVIDIA GeForce RTX 3080
CUDA_HOME: /usr/local/cuda
NVCC: Build cuda_10.2_r440.TC440_70.29663091_0
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.9.1+cu111
PyTorch compiling details: PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.1.2 (Git Hash 98be7e8afa711dc9b66c8ff3504129cb82013cdb)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.1
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.0.5
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.9.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,
TorchVision: 0.10.1+cu111
OpenCV: 4.5.4
MMCV: 1.3.17
MMCV Compiler: GCC 7.3
MMCV CUDA Compiler: 11.1
MMDetection: 2.19.0+
时间分析
Mask R-CNN 的推断过程包含以下几个步骤,我们在一些可能是瓶颈的位置增加了时间统计:
- 图像预处理,
pre-processing
,mmdet/apis/inference.py#L104-L150 - ResNet50 提取特征,
backbone
,mmdet/models/detectors/two_stage.py#L181-L185 - RPN 提取候选框,
rpn_head
,mmdet/models/detectors/two_stage.py#L187-L194 - ROI 精调框以及输出 mask,
roi_head
,mmdet/models/detectors/two_stage.py#L196-L201bbox forward
,时间太短未统计,5ms 以内bbox post-processing
,时间太短未统计,5ms 以内mask forward
,mmdet/models/roi_heads/test_mixins.py#L253-L272mask post-processing
,mmdet/models/roi_heads/test_mixins.py#L275-L288
注意:mask post-processing
的时间包含在 roi_head
里,所以减少 mask post-processing
的时间就是在减少 roi_head
的时间。
使用标准尺寸测试(1333x800)
测试图片:
stage | pre-processing | backbone | rpn_head | mask forward | mask post-processing | roi_head | total |
---|---|---|---|---|---|---|---|
inference | 13.45 | 24.87 | 10.16 | 3.84 | 15.74 | 23.49 | 72.3 |
inference_fp16 | 13.53 | 15.98 | 8.34 | 3.36 | 15.74 | 22.97 | 61.4 |
inference_fp16_preprocess | 1.75 | 15.91 | 8.21 | 3.33 | 15.61 | 22.69 | 49.03 |
inference_raw_mask | 1.65 | 15.93 | 8.34 | 3.36 | 1.74 | 8.89 | 33.45 |
使用较大尺寸测试(3840x2304)
stage | pre-processing | backbone | rpn_head | mask forward | mask post-processing | roi_head | total |
---|---|---|---|---|---|---|---|
inference | 128.44 | 187.24 | 69.96 | 6.01 | 173.72 | 183.95 | 569.92 |
inference_fp16 | 127.28 | 120.10 | 50.30 | 6.80 | 172.42 | 186.81 | 485.04 |
inference_fp16_preprocess | 11.02 | 120.20 | 50.18 | 6.82 | 174.62 | 187.07 | 379.00 |
inference_raw_mask | 11.03 | 120.26 | 50.46 | 6.81 | 2.99 | 15.34 | 197.69 |
可视化
mmdet 原版:
加速版:
目测没有显著差异。
总结
- 使用
wrap_fp16_model
可以节省backbone
的时间,但是不是所有情况下的forward
都能节省时间; - 使用
torchvision.transforms.functional
去做图像预处理,可以极大提升推断速度; - 使用
FCNMaskHeadWithRawMask
,避免对mask
进行resize
,对越大的图像加速比越高,因为resize
到原图大小的成本很高; - 后续优化,需要考虑
backbone
和rpn_head
的优化,可以使用TensorRT
进行加速。
原理分析
fp16
把一些支持 fp16 的层使用 fp16 来推断,可以充分利用显卡的 TensorCore,加速 forward 部分的速度。
参考链接:https://zhuanlan.zhihu.com/p/375224982
在 backbone 上,时间从 24.87 降到 15.93,在大图上从 187.24 降到 120.26,提升 35% 左右。
torchvision.transforms.functional
使用 pytorch 的 resize、pad、normalize,可以利用上 GPU 而不是 CPU。我们在推断过程中,CPU 利用率始终是最高的,而 GPU 利用率几乎没有满过,所以只要能够把 CPU 的事情交给 GPU 做,就能解决瓶颈问题,减少推断时间。
- mmdet 的 pipeline 与
torchvision.transforms.functional
的桥梁:detect/utils_torchvision.py - torchvision.transforms.functional.resize
- torchvision.transforms.functional.pad
- normalize 直接使用 tensor 的减法和除法即可
由于整个过程都可以使用 GPU,所以时间从 13.45 降低到 1.65,在大图上从 128.44 降低到 11.03,提升 10 倍左右。
FCNMaskHeadWithRawMask
首先我们看看 mmdet 处理的结果格式:
可以看到,有多少个 bbox,就有多少个 segm,每个 segm 都是原图尺寸。不管是 CPU,还是内存,都需要大量的时间去处理。
然后再看看 FCNMaskHeadWithRawMask 处理的格式:
每个结果都是 28x28 的,这也是模型原始输出,所以信息量和上面是一样的。
唯一的区别是,我们在拿到结果之后,如果要可视化,需要 resize 到 bbox 的大小,参考 detect/utils_visualize.py#L36-L40
使用 FCNMaskHeadWithRawMask 可以从 15.74 降到 1.74,大图可以从 173.72 降到 2.99,也就是说,图越大,这个加速比越大。