3D Generative Adversarial Network

Overview

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

This repository contains pre-trained models and sampling code for the 3D Generative Adversarial Network (3D-GAN) presented at NIPS 2016.

http://3dgan.csail.mit.edu

Prerequisites

Torch

We use Torch 7 (http://torch.ch) for our implementation with these additional packages:

Visualization

  • Basic visualization: MATLAB (tested on R2016b)
  • Advanced visualization: Python 2.7 with package numpy, matplotlib, scipy and vtk (version 5.10.1)

Note: for advanced visualization, the version of vtk has to be 5.10.1, not above. It is available in the package list of common Python distributions like Anaconda

Installation

Our current release has been tested on Ubuntu 14.04.

Cloning the repository

git clone [email protected]:zck119/3dgan-release.git
cd 3dgan-release

Downloading pretrained models

For CPU (947 MB):

./download_models_cpu.sh

For GPU (618 MB):

./download_models_gpu.sh

Downloading latent vector inputs for demo

./download_demo_inputs.sh

Guide

Synthesizing shapes (main.lua)

We show how to synthesize shapes with our pre-trained models. The file (main.lua) has the following options.

  • -gpu ID: GPU ID (starting from 1). Set to 0 to use CPU only.
  • -class CLASSNAME: synthesize shapes for the class CLASSNAME. We currently support five classes (car, chair, desk, gun, and sofa). Use all to generate shapes for each class.
  • -sample: whether to sample input latent vectors from an i.i.d. uniform distribution, or to generate shapes with demo vectors loaded from ./demo_inputs/CLASSNAME.mat
  • -bs BATCH_SIZE: use batch size of BATCH_SIZE during network forwarding
  • -ss SAMPLE_SIZE: set the number of generated shapes to SAMPLE_SIZE. This option is only available in -sample mode.

Usages include

  • Synthesize chairs with pre-sampled demo inputs and a CPU
th main.lua -gpu 0 -class chair 
  • Randomly sample 150 desks with GPU 1 and a batch size of 50
th main.lua -gpu 1 -class desk -bs 50 -sample -ss 150 
  • Randomly sample 150 shapes of each category with GPU 1 and a batch size of 50
th main.lua -gpu 1 -class all -bs 50 -sample -ss 150 

The output is saved under folder ./output, with class_name_demo.mat for shapes generated by predetermined demo inputs (z in our paper), and class_name_sample.mat for randomly sampled 3D shapes. The variable inputs in the .mat file correponds to the input latent representation, and the variable voxels corresponds to the generated 3D shapes by our network.

Visualization

We offer two ways of visualizing results, one in MATLAB and the other in Python. We used the Python visualization in our paper. The MATLAB visualization is easier to install and run, but its output has a lower quality compared with the Python one.

MATLAB: Please use the function visualization/matlab/visualize.m for visualization. The MATLAB code allows users to either display rendered objects or save them as images. The script also supports downsampling and thresholding for faster rendering. The color of voxels represents the confidence value.

Options include

  • inputfile: the .mat file that saves the voxel matrices
  • indices: the indices of objects in the inputfile that should be rendered. The default value is 0, which stands for rendering all objects.
  • step (s): downsample objects via a max pooling of step s for efficiency. The default value is 4 (64 x 64 x 64 -> 16 x 16 x 16).
  • threshold: voxels with confidence lower than the threshold are not displayed
  • outputprefix:
    • when not specified, Matlab shows figures directly.
    • when specified, Matlab stores rendered images of objects at outputprefix_%i.bmp, where %i is the index of objects

Usage (after running th main.lua -gpu 0 -class chair, in MATLAB, in folder visualization/matlab):

visualize('../../output/chair_demo.mat', 0, 2, 0.1, 'chair')

The visualization might take a while. The obtained rendering (chair_1/3/4/5.bmp) should look as follows.

Python: Options for the Python visualization include

  • -t THRESHOLD: voxels with confidence lower than the threshold are not displayed. The default value is 0.1.
  • -i ID: the index of objects in the inputfile that should be rendered (one based). The default value is 1.
  • -df STEPSIZE: downsample objects via a max pooling of step STEPSIZE for efficiency. Currently supporting STEPSIZE 1, 2, and 4. The default value is 1 (i.e. no downsampling).
  • -dm METHOD: downsample method, where mean stands for average pooling and max for max pooling. The default is max pooling.
  • -u BLOCK_SIZE: set the size of the voxels to BLOCK_SIZE. The default value is 0.9.
  • -cm: whether to use a colormap to represent voxel occupancy, or to use a uniform color
  • -mc DISTANCE: whether to keep only the maximal connected component, where voxels of distance no larger than DISTANCE are considered connected. Set to 0 to disable this function. The default value is 3.

Usage:

python visualize.py chair_demo.mat -u 0.9 -t 0.1 -i 1 -mc 2

Reference

@inproceedings{3dgan,
  title={{Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling}},
  author={Wu, Jiajun and Zhang, Chengkai and Xue, Tianfan and Freeman, William T and Tenenbaum, Joshua B},
  booktitle={Advances In Neural Information Processing Systems},
  pages={82--90},
  year={2016}
}

For any questions, please contact Jiajun Wu ([email protected]) and Chengkai Zhang ([email protected]).

You might also like...
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

NR-GAN: Noise Robust Generative Adversarial Networks
NR-GAN: Noise Robust Generative Adversarial Networks

NR-GAN: Noise Robust Generative Adversarial Networks (CVPR 2020) This repository provides PyTorch implementation for noise robust GAN (NR-GAN). NR-GAN

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

PyTorch implementations of Generative Adversarial Networks.
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Comments
  •  module 'nn' not found

    module 'nn' not found

    I tried running the code but its showing this error

    > 	no field package.preload['nn']
    	no file './nn.lua'
    	no file '/usr/share/luajit-2.1.0-beta3/nn.lua'
    	no file '/usr/local/share/lua/5.1/nn.lua'
    	no file '/usr/local/share/lua/5.1/nn/init.lua'
    	no file '/usr/share/lua/5.1/nn.lua'
    	no file '/usr/share/lua/5.1/nn/init.lua'
    	no file './nn.so'
    	no file '/usr/local/lib/lua/5.1/nn.so'
    	no file '/usr/lib/x86_64-linux-gnu/lua/5.1/nn.so'
    	no file '/usr/local/lib/lua/5.1/loadall.so'
    stack traceback:
    	[C]: in function 'error'
    	/usr/share/lua/5.1/trepl/init.lua:389: in function 'require'
    	main.lua:1: in main chunk
    	[C]: in function 'dofile'
    	/usr/lib/torch-trepl/th:149: in main chunk
    	[C]: at 0x561c0f12c1d0
    

    I have pytorch installed.

    opened by ashishgupta2598 6
  • Latent Space Interpolation

    Latent Space Interpolation

    Looking for clarification on latent space interpolation from your paper:

    For WITHIN class interpolation (e.g. chair type1 <-> chair type2) you can use the generator network that was trained on that single object category (e.g. the chair generator network).

    But for BETWEEN class latent space interpolation, am I right in assuming that you trained the network on the union of the category1 category2 datasets (e.g. cars and boats), and then use that generator network's latent vectors and 3D generated objects? So to interpolate between two distinct categories, you must train a new network on the union of those data sets? In your paper you used cars and boats. Was this choice because that paring had better results than other pairings, and if so, do you think inter-class interpolation will work best when the 2 object categories are somewhat similar (e.g. the bounding boxes of cars and boats are basically shoe box shaped so going between them is easier than going from a car to a chair, which typically has bounding boxes that are more cube shaped so has different relative dimensions)? Or was the choice because it is arguably more semantically meaningful to go between 2 vehicle types (car-boat) than e.g. an airplane to a cup?

    opened by wasd12345 2
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 9, 2023
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Unofficial implement with paper SpeakerGAN: Speaker identification with conditional generative adversarial network

Introduction This repository is about paper SpeakerGAN , and is unofficially implemented by Mingming Huang ([email protected]), Tiezheng Wang (wtz920729

null 7 Jan 3, 2023
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

null 41 Apr 28, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

?? Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) ?? If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 4, 2023
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

null 3k Jan 8, 2023
GANsformer: Generative Adversarial Transformers Drew A

GANsformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick *I wish to thank Christopher D. Manning for the fruitf

Drew Arad Hudson 1.2k Jan 2, 2023