A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

Overview

SelfGNN

A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in The International Workshop on Self-Supervised Learning for the Web (SSL'21) @ the Web Conference 2021 (WWW'21).

Note

This is an ongoing work and the repository is subjected to continuous updates.

Requirements!

  • Python 3.6+
  • PyTorch 1.6+
  • PyTorch Geometric 1.6+
  • Numpy 1.17.2+
  • Networkx 2.3+
  • SciPy 1.5.4+
  • (OPTINAL) OPTUNA 2.8.0+ If you wish to tune the hyper-parameters of SelfGNN for any dataset

Example usage

$ python src/train.py

💥 Updates

Update 3

Added a hyper-parameter tuning utility using OPTUNA.

usage:

$ python src/tune.py

Update 2

Contrary to what we've claimed in the paper, studies argue and empirically show that Batch Norm does not introduce implicit negative samples. Instead, mainly it compensate for improper initialization. We have carried out new and similar experiments, as shown in the table below, that seems to confirm this argument. (BN:Batch Norm, LN:Layer Norm, -: No Norm ). For this experiment we use a GCN encoder and split data-augmentation. Though BN does not provide implicit negative samples, the empirical evaluation shows that it leads to a better performance; putting it in the encoder is almost sufficient. LN on the other hand is not cosistent; furthemore, the model tends to prefer having BN than LN in any of the modules.

Module Dataset
Encoder Projector Predictor Photo Computer Pubmed
BN BN BN 94.05±0.23 88.83±0.17 77.76±0.57
- 94.2±0.17 88.78±0.20 75.48±0.70
- BN 94.01±0.20 88.65±0.16 78.66±0.52
- 93.9±0.18 88.82±0.16 78.53±0.47
LN LN LN 81.42±2.43 64.10±3.29 74.06±1.07
- 84.1±1.58 68.18±3.21 74.26±0.55
- LN 92.39±0.38 77.18±1.23 73.84±0.73
- 91.93±0.40 73.90±1.16 74.11±0.73
- BN BN 90.01±0.09 77.83±0.12 79.21±0.27
- 90.12±0.07 76.43±0.08 75.10±0.15
LN LN 45.34±2.47 40.56±1.48 56.29±0.77
- 52.92±3.37 40.23±1.46 60.76±0.81
- - BN 91.13±0.13 81.79±0.11 79.34±0.21
LN 50.64±2.84 47.62±2.27 64.18±1.08
- 50.35±2.73 43.68±1.80 63.91±0.92

Update 1

  • Both the paper and the source code are updated following the discussion on this issue
  • Ablation study on the impact of BatchNorm added following reviewers feedback from SSL'21
    • The findings show that SelfGNN with out batch normalization is not stable and often its performance drops significantly
    • Layer Normalization behaves similar to the finding of no BatchNorm

Possible options for training SelfGNN

The following options can be passed to src/train.py

--root: or -r: A path to a root directory to put all the datasets. Default is ./data

--name: or -n: The name of the datasets. Default is cora. Check the Supported dataset names

--model: or -m: The type of GNN architecture to use. Curently three architectres are supported (gcn, gat, sage). Default is gcn.

--aug: or -a: The name of the data augmentation technique. Curently (ppr, heat, katz, split, zscore, ldp, paste) are supported. Default is split.

--layers: or -l: One or more integer values specifying the number of units for each GNN layer. Default is 512 128

--norms: or -nm: The normalization scheme for each module. Default is batch. That is, a Batch Norm will be used in the prediction head. Specifying two inputs, e.g. --norms batch layer, allows the model to use batch norm in the GNN encoder, and layer norm in the prediction head. Finally, specifying three inputs, e.g., --norms no batch layer activates the projection head and normalization is used as: No norm for GNN encoder, Batch Norm for projection head and Layer Norm for the prediction head.

--heads: or -hd: One or more values specifying the number of heads for each GAT layer. Applicable for --model gat. Default is 8 1

--lr: or -lr: Learning rate, a value in [0, 1]. Default is 0.0001

--dropout: or -do: Dropout rate, a value in [0, 1]. Deafult is 0.2

--epochs: or -e: The number of epochs. Default is 1000.

--cache-step: or -cs: The step size for caching the model. That is, every --cache-step the model will be persisted. Default is 100.

--init-parts: or -ip: The number of initial partitions, for using the improved version using Clustering. Default is 1.

--final-parts: or -fp: The number of final partitions, for using the improved version using Clustering. Default is 1.

Supported dataset names

Name Nodes Edges Features Classes Description
Cora 2,708 5,278 1,433 7 Citation Network
Citeseer 3,327 4,552 3,703 6 Citation Network
Pubmed 19,717 44,324 500 3 Citation Network
Photo 7,487 119,043 745 8 Co-purchased products network
Computers 13,381 245,778 767 10 Co-purchased products network
CS 18,333 81,894 6,805 15 Collaboration network
Physics 34,493 247,962 8,415 5 Collaboration network

Any dataset from the PyTorch Geometric library can be used, however SelfGNN is tested only on the above datasets.

Citing

If you find this research helpful, please cite it as

@misc{kefato2021selfsupervised,
      title={Self-supervised Graph Neural Networks without explicit negative sampling}, 
      author={Zekarias T. Kefato and Sarunas Girdzijauskas},
      year={2021},
      eprint={2103.14958},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
You might also like...
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Comments
  • Not use public split on citation networks

    Not use public split on citation networks

    Hi, thanks for your nice work. I find that in the original paper you state that you use the public split on the citation networks. However, in this repo it seems that you use random split. Can you explain it?

    opened by hengruizhang98 5
  • reproduce problem

    reproduce problem

    Hello,your work is novel.I try to reproduce it,but I meet the same problem when I use python src/train.py command.The problem is following: Traceback (most recent call last): File "src/train.py", line 261, in main() File "src/train.py", line 257, in main train_eval(args) File "src/train.py", line 248, in train_eval trainer = ModelTrainer(args) File "src/train.py", line 24, in init self._init() File "src/train.py", line 33, in _init final_parts=args.final_parts, augumentation=self._aug) File "/mnt/SelfGNN/src/data.py", line 28, in init super().init(root=osp.join(root, name), transform=transform, pre_transform=pre_transform) File "/root/miniconda3/envs/myconda/lib/python3.7/site-packages/torch_geometric/data/in_memory_dataset.py", line 55, in init pre_filter) File "/root/miniconda3/envs/myconda/lib/python3.7/site-packages/torch_geometric/data/dataset.py", line 89, in init self._download() File "/root/miniconda3/envs/myconda/lib/python3.7/site-packages/torch_geometric/data/dataset.py", line 141, in _download self.download() File "/mnt/SelfGNN/src/data.py", line 32, in download utils.create_dirs(self.dirs) File "/mnt/SelfGNN/src/utils.py", line 182, in create_dirs os.makedirs(path, exist_ok=True) File "/root/miniconda3/envs/myconda/lib/python3.7/os.py", line 223, in makedirs mkdir(name, mode) FileNotFoundError: [Errno 2] No such file or directory: ''

    Then I used python src/tune.py,it is wrong because of above error.

    So I ask for your help.Thank you.

    opened by yaominghong 3
  • Question on Final representation

    Question on Final representation

    Hello I'm so glad to read such a nice paper, and I tried to run the code.

    I have question on final embedding. In your paper, it is written final embedding size is 128. But in code, finally it is concatenated and final embedding size seems to be 256.

    I'm wondering if your experiments are done in embedding size 256. Thank you.

    opened by Namkyeong 3
Owner
Zekarias Tilahun
Zekarias Tilahun
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 8, 2022
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Harry Yang 121 Dec 17, 2022
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 8, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 7, 2023
Fang Zhonghao 13 Nov 19, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 4, 2023
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 6, 2023
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

NVIDIA Corporation 6.9k Jan 3, 2023