📖 Deep Attentional Guided Image Filtering

Related tags

Deep Learning DAGF
Overview

📖 Deep Attentional Guided Image Filtering

[Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji
Harbin Institute of Technology, Tsinghua University

Abstract

Guided filter is a fundamental tool in computer vision and computer graphics which aims to transfer structure information from guidance image to target image. Most existing methods construct filter kernels from the guidance itself without considering the mutual dependency between the guidance and the target. However, since there typically exist significantly different edges in the two images, simply transferring all structural information of the guidance to the target would result in various artifacts. To cope with this problem, we propose an effective framework named deep attentional guided image filtering, the filtering process of which can fully integrate the complementary information contained in both images. Specifically, we propose an attentional kernel learning module to generate dual sets of filter kernels from the guidance and the target, respectively, and then adaptively combine them by modeling the pixel-wise dependency between the two images. Meanwhile, we propose a multi-scale guided image filtering module to progressively generate the filtering result with the constructed kernels in a coarse-to-fine manner. Correspondingly, a multi-scale fusion strategy is introduced to reuse the intermediate results in the coarse-to-fine process. Extensive experiments show that the proposed framework compares favorably with the state-of-the-art methods in a wide range of guided image filtering applications, such as guided super-resolution, cross-modality restoration, texture removal, and semantic segmentation.


This repository is an official PyTorch implementation of the paper "Deep Attentional Guided Filtering"

🔧 Dependencies and Installation

Installation

  1. Clone repo

    git https://github.com/zhwzhong/DAGF.git
    cd DAGF
  2. Install dependent packages

    pip install -r requirements.txt

Dataset

  1. NYU
  2. Lu
  3. Middlebury
  4. Sintel
  5. ToFMark
  6. DUT-OMRON

Trained Models

You can directly download the trained model and put it in checkpoints:

  • DAGF (Nearest):4, 8, 16
  • DAGF (Bicubic): 4, 8, 16

Train

You can also train by yourself:

 python main.py  --scale=16  --save_real --dataset_name='NYU' --model_name='DAGF'

Pay attention to the settings in the option (e.g. gpu id, model_name).

Test

We provide the processed test data in 'test_data' and pre-trained models in 'pre_trained' With the trained model, you can test and save depth images.

python quick_test.py

Acknowledgments

TO DO

  1. Release the trained models for compared models:
  2. Release the experimental resutls of the compared models.

🏅 Our method won the Real DSR Challenge in ICMR 2021.

The detail information can be fond here.

📧 Contact

If you have any question, please email [email protected]

You might also like...
 Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Implementation for
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. It applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems and solves each subproblem via DROO algorithm. It includes:

Code for the paper
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

ICRA 2021
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

Comments
  • Question on ./model/dgaf.py

    Question on ./model/dgaf.py

    Good job! Thank you for your excellent work! I have a question about the Kernel Generation, i.e., what the meaning of the following code in the FuseBlock module.

    •     fuse_kernel = torch.tanh(fuse_kernel) / (self.aff_scale_const + 1e-8)
      
    •    abs_kernel = torch.abs(fuse_kernel)
      
    •    abs_kernel_sum = torch.sum(abs_kernel, dim=1, keepdim=True) + 1e-4
      
    •     abs_kernel_sum[abs_kernel_sum < 1.0] = 1.0
      
    •     fuse_kernel = fuse_kernel / abs_kernel_sum
      

    Could you please provide more information about this? Thank you for your kind consideration of this request.

    opened by women1995 4
Owner
null
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 2, 2021
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

null 6 Nov 2, 2022
Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

null 34 Oct 8, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

null 2 Nov 15, 2021
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

null 15 Dec 27, 2022
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 3, 2022