Hello, I am new in PyTorch but i implemented DeepAR model by your implementation. I need a help to make time window inference. i am saving model as .pkl in the base model and I have modified the evaluate.py code a bit. what i need is predict function that will take a time window and give the prediction result. so far I have done this
# -*- coding: utf-8 -*-
"""
Created on Sat Jun 13 13:42:11 2020
"""
import argparse
import logging
import os
import numpy as np
import torch
from torch.utils.data.sampler import RandomSampler
from tqdm import tqdm
import utils
import model.net as net
from dataloader import *
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import pandas as pd
logger = logging.getLogger('DeepAR.Eval')
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='test_dataset', help='Name of the dataset')
parser.add_argument('--data-folder', default='data', help='Parent dir of the dataset')
parser.add_argument('--model-name', default='base_model', help='Directory containing params.json')
parser.add_argument('--relative-metrics', action='store_true', help='Whether to normalize the metrics by label scales')
parser.add_argument('--sampling', action='store_true', help='Whether to sample during evaluation')
parser.add_argument('--restore-file', default='best',
help='Optional, name of the file in --model_dir containing weights to reload before \
training')
def evaluate(model, loss_fn, test_loader, params, plot_num, sample=True):
'''Evaluate the model on the test set.
Args:
model: (torch.nn.Module) the Deep AR model
loss_fn: a function that takes outputs and labels per timestep, and then computes the loss for the batch
test_loader: load test data and labels
params: (Params) hyperparameters
plot_num: (-1): evaluation from evaluate.py; else (epoch): evaluation on epoch
sample: (boolean) do ancestral sampling or directly use output mu from last time step
'''
model.eval()
with torch.no_grad():
print("In model .eval")
plot_batch = np.random.randint(len(test_loader))
print("plot_batch value in evaluation", plot_batch)
summary_metric = {}
raw_metrics = utils.init_metrics(sample=sample)
# Test_loader:
# test_batch ([batch_size, train_window, 1+cov_dim]): z_{0:T-1} + x_{1:T}, note that z_0 = 0;
# id_batch ([batch_size]): one integer denoting the time series id;
# v ([batch_size, 2]): scaling factor for each window;
# labels ([batch_size, train_window]): z_{1:T}.
for i, (test_batch, id_batch, v, labels) in enumerate(tqdm(test_loader)):
test_batch = test_batch.permute(1, 0, 2).to(torch.float32).to(params.device)
id_batch = id_batch.unsqueeze(0).to(params.device)
v_batch = v.to(torch.float32).to(params.device)
labels = labels.to(torch.float32).to(params.device)
batch_size = test_batch.shape[1]
input_mu = torch.zeros(batch_size, params.test_predict_start, device=params.device) # scaled
input_sigma = torch.zeros(batch_size, params.test_predict_start, device=params.device) # scaled
hidden = model.init_hidden(batch_size)
cell = model.init_cell(batch_size)
for t in range(params.test_predict_start):
# if z_t is missing, replace it by output mu from the last time step
zero_index = (test_batch[t,:,0] == 0)
if t > 0 and torch.sum(zero_index) > 0:
test_batch[t,zero_index,0] = mu[zero_index]
mu, sigma, hidden, cell = model(test_batch[t].unsqueeze(0), id_batch, hidden, cell)
input_mu[:,t] = v_batch[:, 0] * mu + v_batch[:, 1]
input_sigma[:,t] = v_batch[:, 0] * sigma
if sample:
samples, sample_mu, sample_sigma = model.test(test_batch, v_batch, id_batch, hidden, cell, sampling=True)
raw_metrics = utils.update_metrics(raw_metrics, input_mu, input_sigma, sample_mu, labels, params.test_predict_start, samples, relative = params.relative_metrics)
else:
sample_mu, sample_sigma = model.test(test_batch, v_batch, id_batch, hidden, cell)
raw_metrics = utils.update_metrics(raw_metrics, input_mu, input_sigma, sample_mu, labels, params.test_predict_start, relative = params.relative_metrics)
if i == plot_batch:
if sample:
sample_metrics = utils.get_metrics(sample_mu, labels, params.test_predict_start, samples, relative = params.relative_metrics)
else:
sample_metrics = utils.get_metrics(sample_mu, labels, params.test_predict_start, relative = params.relative_metrics)
# select 10 from samples with highest error and 10 from the rest
top_10_nd_sample = (-sample_metrics['ND']).argsort()[:batch_size // 10] # hard coded to be 10
chosen = set(top_10_nd_sample.tolist())
all_samples = set(range(batch_size))
not_chosen = np.asarray(list(all_samples - chosen))
if batch_size < 100: # make sure there are enough unique samples to choose top 10 from
random_sample_10 = np.random.choice(top_10_nd_sample, size=10, replace=True)
else:
random_sample_10 = np.random.choice(top_10_nd_sample, size=10, replace=False)
if batch_size < 12: # make sure there are enough unique samples to choose bottom 90 from
random_sample_90 = np.random.choice(not_chosen, size=10, replace=True)
else:
random_sample_90 = np.random.choice(not_chosen, size=10, replace=False)
combined_sample = np.concatenate((random_sample_10, random_sample_90))
label_plot = labels[combined_sample].data.cpu().numpy()
predict_mu = sample_mu[combined_sample].data.cpu().numpy()
predict_sigma = sample_sigma[combined_sample].data.cpu().numpy()
plot_mu = np.concatenate((input_mu[combined_sample].data.cpu().numpy(), predict_mu), axis=1)
plot_sigma = np.concatenate((input_sigma[combined_sample].data.cpu().numpy(), predict_sigma), axis=1)
plot_metrics = {_k: _v[combined_sample] for _k, _v in sample_metrics.items()}
plot_eight_windows(params.plot_dir, plot_mu, plot_sigma, label_plot, params.test_window, params.test_predict_start, plot_num, plot_metrics, sample)
summary_metric = utils.final_metrics(raw_metrics, sampling=sample)
metrics_string = '; '.join('{}: {:05.3f}'.format(k, v) for k, v in summary_metric.items())
logger.info('- Full test metrics: ' + metrics_string)
return summary_metric
def plot_eight_windows(plot_dir,
predict_values,
predict_sigma,
labels,
window_size,
predict_start,
plot_num,
plot_metrics,
sampling=False):
x = np.arange(window_size)
f = plt.figure(figsize=(8, 42), constrained_layout=True)
nrows = 21
ncols = 1
ax = f.subplots(nrows, ncols)
for k in range(nrows):
if k == 10:
ax[k].plot(x, x, color='g')
ax[k].plot(x, x[::-1], color='g')
ax[k].set_title('This separates top 10 and bottom 90', fontsize=10)
continue
m = k if k < 10 else k - 1
# for 24 hour predictioon
print('iteration',k)
predict_or_df=pd.DataFrame(predict_values[m,predict_start:],columns=['y_pred'])
predict_next_df=pd.DataFrame(labels[m,predict_start:],columns=['y_true'])
y_lower= predict_values[m,predict_start:]-predict_sigma[m,predict_start:]
y_lower_df=pd.DataFrame(y_lower,columns=['y_lower'])
y_upper=predict_values[m,predict_start:]+ predict_sigma[m,predict_start:]
y_upper_df=pd.DataFrame(y_upper,columns=['y_upper'])
y2_lower=predict_values[m,predict_start:] - 2 * predict_sigma[m,predict_start:]
y2_lower_df=pd.DataFrame(y2_lower,columns=['y2_lower'])
y2_upper=predict_values[m,predict_start:] + 2 * predict_sigma[m,predict_start:]
y2_upper_df=pd.DataFrame(y2_upper,columns=['y2_upper'])
frames=[predict_next_df,predict_or_df,y_lower_df,y_upper_df,y2_lower_df,y2_upper_df]
summarydf=pd.concat(frames,axis=1)
print(summarydf)
summarydf.to_csv('/Users/kalyan.admin/KalyanWork/Timeseries_covid/experiments/csvfiles_inferenceset/pytorch_report_"%s".csv'%(k))
#Visualgraph for 192 hour windows that is week based hourly prediction
ax[k].plot(x, predict_values[m], color='b')
ax[k].fill_between(x[predict_start:], predict_values[m, predict_start:] - 2 * predict_sigma[m, predict_start:],
predict_values[m, predict_start:] + 2 * predict_sigma[m, predict_start:], color='blue',
alpha=0.2)
ax[k].plot(x, labels[m, :], color='r')
ax[k].axvline(predict_start, color='g', linestyle='dashed')
#metrics = utils.final_metrics_({_k: [_i[k] for _i in _v] for _k, _v in plot_metrics.items()})
plot_metrics_str = f'ND: {plot_metrics["ND"][m]: .3f} ' \
f'RMSE: {plot_metrics["RMSE"][m]: .3f}'
if sampling:
plot_metrics_str += f' rou90: {plot_metrics["rou90"][m]: .3f} ' \
f'rou50: {plot_metrics["rou50"][m]: .3f}'
ax[k].set_title(plot_metrics_str, fontsize=10)
f.savefig(os.path.join(plot_dir, str(plot_num) + '.png'))
plt.close()
if __name__ == '__main__':
# Load the parameters
args = parser.parse_args()
model_dir = os.path.join('experiments', args.model_name)
json_path = os.path.join(model_dir, 'params.json')
data_dir = os.path.join(args.data_folder, args.dataset)
assert os.path.isfile(json_path), 'No json configuration file found at {}'.format(json_path)
params = utils.Params(json_path)
utils.set_logger(os.path.join(model_dir, 'eval.log'))
params.relative_metrics = args.relative_metrics
params.sampling = args.sampling
params.model_dir = model_dir
params.plot_dir = os.path.join(model_dir, 'figures')
cuda_exist = torch.cuda.is_available() # use GPU is available
# Set random seeds for reproducible experiments if necessary
if cuda_exist:
params.device = torch.device('cuda')
# torch.cuda.manual_seed(240)
logger.info('Using Cuda...')
model = net.Net(params).cuda()
else:
params.device = torch.device('cpu')
# torch.manual_seed(230)
logger.info('Not using cuda...')
model = net.Net(params)
# Create the input data pipeline
logger.info('Loading the datasets...')
test_set = TestDataset(data_dir, args.dataset, params.num_class)
test_loader = DataLoader(test_set, batch_size=params.predict_batch, sampler=RandomSampler(test_set), num_workers=4)
print("testloader",type(test_loader))
#print(test_loader)
logger.info('- done.')
print('model: ', model)
loss_fn = net.loss_fn
logger.info('Starting evaluation')
# Reload weights from the saved file
utils.load_checkpoint(os.path.join(model_dir, args.restore_file + '.pkl'), model)
test_metrics = evaluate(model, loss_fn, test_loader, params, -1, params.sampling)
save_path = os.path.join(model_dir, 'metrics_test_{}.json'.format(args.restore_file))
utils.save_dict_to_json(test_metrics, save_path)
so up to this
in plot window function plot_eight_windows i am calculating my y_pred, y_true, y_upper,y_lower, and save those files into a folder. what i have done is i have processed a test dataset and saved it in differnt folder for only inference purposes. and i use this it is in pretrained model in best_pkl. I am getting result but i am in confusion like , am i evaluating here or doing actual inference. what if I call a time range
2020-04-25 00:00:00 and want to predict the related values o. using my pretrained model. Kindly help me to sort it out