Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Related tags

Deep Learning MIGCN
Overview

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos

Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Model Pipeline

model-pipeline

Usage

Environment Settings

We use the PyTorch framework.

  • Python version: 3.7.0
  • PyTorch version: 1.4.0

Get Code

Clone the repository:

git clone https://github.com/zmzhang2000/MIGCN.git
cd MIGCN

Data Preparation

Charades-STA

ActivityNet

  • Download the preprocessed annotations of ActivityNet.
  • Download the C3D features of ActivityNet.
  • Process the C3D feature according to process_activitynet_c3d() in data/preprocess/preprocess.py.
  • Save them in data/activitynet.

Pre-trained Models

  • Download the checkpoints of Charades-STA and ActivityNet.
  • Save them in checkpoints

Data Generation

We provide the generation procedure of all MIGCN data.

  • The raw data is listed in data/raw_data/download.sh.
  • The preprocess code is in data/preprocess.

Training

Train MIGCN on Charades-STA with I3D feature:

python main.py --dataset charades --feature i3d

Train MIGCN on ActivityNet with C3D feature:

python main.py --dataset activitynet --feature c3d

Testing

Test MIGCN on Charades-STA with I3D feature:

python main.py --dataset charades --feature i3d --test --model_load_path checkpoints/$MODEL_CHECKPOINT

Test MIGCN on ActivityNet with C3D feature:

python main.py --dataset activitynet --feature c3d --test --model_load_path checkpoints/$MODEL_CHECKPOINT

Other Hyper-parameters

List other hyper-parameters by:

python main.py -h

Reference

Please cite the following paper if MIGCN is helpful for your research

@ARTICLE{9547801,
  author={Zhang, Zongmeng and Han, Xianjing and Song, Xuemeng and Yan, Yan and Nie, Liqiang},
  journal={IEEE Transactions on Image Processing}, 
  title={Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos}, 
  year={2021},
  volume={30},
  number={},
  pages={8265-8277},
  doi={10.1109/TIP.2021.3113791}}
You might also like...
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders
Code and pre-trained models for MultiMAE: Multi-modal Multi-task Masked Autoencoders

MultiMAE: Multi-modal Multi-task Masked Autoencoders Roman Bachmann*, David Mizrahi*, Andrei Atanov, Amir Zamir Website | arXiv | BibTeX Official PyTo

MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

 Code for CVPR2021 paper
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

Comments
  • About I3D feature

    About I3D feature

    Hi, thanks for releasing the code! I have a question about the Charades I3D feature. Did you extract the I3D feature by yourself? If so, could you share more detail about the feature extractor?

    opened by xljh0520 7
Owner
Zongmeng Zhang
Zongmeng Zhang
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 3, 2023
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 8, 2023
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

null 11 Dec 13, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022