7177 Repositories
Python beginners-pytorch-deep-learning Libraries
A project to make Amazon Echo respond to sign language using your webcam
Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...
Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code
Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas
Pipeline for training LSA models using Scikit-Learn.
Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j
An 16kHz implementation of HiFi-GAN for soft-vc.
HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa
Pre-Training with Whole Word Masking for Chinese BERT
Pre-Training with Whole Word Masking for Chinese BERT
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)
This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i
Optimus: the first large-scale pre-trained VAE language model
Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2
SentAugment is a data augmentation technique for semi-supervised learning in NLP.
SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur
A single model that parses Universal Dependencies across 75 languages.
A single model that parses Universal Dependencies across 75 languages. Given a sentence, jointly predicts part-of-speech tags, morphology tags, lemmas, and dependency trees.
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".
LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".
VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"
UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part
VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations
VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition
Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode
Train Dense Passage Retriever (DPR) with a single GPU
Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G
Toolkit for developing and maintaining ML models
modelkit Python framework for production ML systems. modelkit is a minimalist yet powerful MLOps library for Python, built for people who want to depl
Learn Python Regular Expressions step by step from beginner to advanced levels
Python re(gex)? Learn Python Regular Expressions step by step from beginner to advanced levels with hundreds of examples and exercises The book also i
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021
HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle
DOC | Quick Start | ä¸æ–‡ Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021
PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"
This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th
The official implementation of Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"
ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.
Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation
Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]
Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi
PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.
Neural Emotion Director (NED) - Official Pytorch Implementation Example video of facial emotion manipulation while retaining the original mouth motion
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"
CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c
A PyTorch Toolbox for Face Recognition
FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat
Learn to code in any language. If
Learn to Code It is an intiiative undertaken by Student Ambassadors Club, Jamshoro for students who are absolute begineers in programming and want to
A fast, pure python implementation of the MuyGPs Gaussian process realization and training algorithm.
Fast implementation of the MuyGPs Gaussian process hyperparameter estimation algorithm MuyGPs is a GP estimation method that affords fast hyperparamet
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving
GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh
Self-Supervised Learning with Kernel Dependence Maximization
Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self
PyTorch Implementation of Backbone of PicoDet
PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.
FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f
Deep Q Learning with OpenAI Gym and Pokemon Showdown
pokemon-deep-learning An openAI gym project for pokemon involving deep q learning. Made by myself, Sam Little, and Layton Webber. This code captures g
PLUR is a collection of source code datasets suitable for graph-based machine learning.
PLUR (Programming-Language Understanding and Repair) is a collection of source code datasets suitable for graph-based machine learning. We provide scripts for downloading, processing, and loading the datasets. This is done by offering a unified API and data structures for all datasets.
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation
VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen
PyTorch trainer and model for Sequence Classification
PyTorch-trainer-and-model-for-Sequence-Classification After cloning the repository, modify your training data so that the training data is a .csv file
Implementation of "Semi-supervised Domain Adaptive Structure Learning"
Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo
Upgini : data search library for your machine learning pipelines
Automated data search library for your machine learning pipelines → find & deliver relevant external data & features to boost ML accuracy :chart_with_upwards_trend:
Learning to Rewrite for Non-Autoregressive Neural Machine Translation
RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)
Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural
Another pytorch implementation of FCN (Fully Convolutional Networks)
FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f
A Light CNN for Deep Face Representation with Noisy Labels
A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.
Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.
Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning
Inflated i3d network with inception backbone, weights transfered from tensorflow
I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.
Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup
Open source annotation tool for machine learning practitioners.
doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet
Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran
DISTIL: Deep dIverSified inTeractIve Learning.
DISTIL: Deep dIverSified inTeractIve Learning. An active/inter-active learning library built on py-torch for reducing labeling costs.
Code for Editing Factual Knowledge in Language Models
KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed
EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.
Codebase for training transformers on systematic generalization datasets. The official repository for our EMNLP 2021 paper The Devil is in the Detail:
Code for the paper "Are Sixteen Heads Really Better than One?"
Are Sixteen Heads Really Better than One? This repository contains code to reproduce the experiments in our paper Are Sixteen Heads Really Better than
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"
pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.
DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)
Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos
Implementation of Continuous Sparsification, a method for pruning and ticket search in deep networks
Continuous Sparsification Implementation of Continuous Sparsification (CS), a method based on l_0 regularization to find sparse neural networks, propo
Super Tickets in Pre-Trained Language Models: From Model Compression to Improving Generalization (ACL 2021)
Structured Super Lottery Tickets in BERT This repo contains our codes for the paper "Super Tickets in Pre-Trained Language Models: From Model Compress
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021
efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".
Multi-Task Deep Neural Networks for Natural Language Understanding
New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.
The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.
Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.
Zero-shot Learning by Generating Task-specific Adapters
Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s
This repository contains the code for "Exploiting Cloze Questions for Few-Shot Text Classification and Natural Language Inference"
Pattern-Exploiting Training (PET) This repository contains the code for Exploiting Cloze Questions for Few-Shot Text Classification and Natural Langua
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models
LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.
EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying
Revisiting Self-Training for Few-Shot Learning of Language Model.
SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"
This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)
HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇
MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is
The code is the training example of AAAI2022 Security AI Challenger Program Phase 8: Data Centric Robot Learning on ML models.
Example code of [Tianchi AAAI2022 Security AI Challenger Program Phase 8]
DANeS is an open-source E-newspaper dataset by collaboration between DATASET JSC (dataset.vn) and AIV Group (aivgroup.vn)
DANeS - Open-source E-newspaper dataset Source: Technology vector created by macrovector - www.freepik.com. DANeS is an open-source E-newspaper datase
ExCon: Explanation-driven Supervised Contrastive Learning
ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha
Python bilgilerimi eğlenceli bir şekilde hatırlamak ve daha da geliştirmek için The Big Book of Small Python Projects isimli bir kitap almıştım.
Python bilgilerimi eğlenceli bir şekilde hatırlamak ve daha da geliştirmek için The Big Book of Small Python Projects isimli bir kitap almıştım. Bu repo kitaptaki örnek programları çalıştığım oyun alanım.
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.
DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang
Deep learned, hardware-accelerated 3D object pose estimation
Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries
DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"
Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral
Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.
Label Studio is a multi-type data labeling and annotation tool with standardized output format
Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types
A deep learning based semantic search platform that computes similarity scores between provided query and documents
semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents
Efficient training of deep recommenders on cloud.
HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and
A general framework for deep learning experiments under PyTorch based on pytorch-lightning
torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text
Implementation of Vaswani, Ashish, et al. "Attention is all you need."
Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics
ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s
A command line tool that creates a super timeline from SentinelOne's Deep Visibility data
S1SuperTimeline A command line tool that creates a super timeline from SentinelOne's Deep Visibility data What does it do? The script accepts a S1QL q
AML Command Transfer. A lightweight tool to transfer any command line to Azure Machine Learning Services
AML Command Transfer (ACT) ACT is a lightweight tool to transfer any command from the local machine to AML or ITP, both of which are Azure Machine Lea