123 Repositories
Python matrix-decomposition Libraries
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.
Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture
monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical algebra libraries.
An open-source library of algorithms to analyse time series in GPU and CPU.
An open-source library of algorithms to analyse time series in GPU and CPU.
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
Multivariate imputation and matrix completion algorithms implemented in Python
A variety of matrix completion and imputation algorithms implemented in Python 3.6. To install: pip install fancyimpute Do not use conda. We don't sup
The goal of this library is to generate more helpful exception messages for numpy/pytorch matrix algebra expressions.
Tensor Sensor See article Clarifying exceptions and visualizing tensor operations in deep learning code. One of the biggest challenges when writing co
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations
PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile
matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks
STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim
[ICLR 2021] Is Attention Better Than Matrix Decomposition?
Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning
tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f
Scikit-learn compatible estimation of general graphical models
skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships
fastFM: A Library for Factorization Machines
Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat
Synapse: Matrix reference homeserver
Synapse Contents Introduction About Matrix Support Synapse Installation Connecting to Synapse from a client Registering a new user from a client ACME
Code for "Layered Neural Rendering for Retiming People in Video."
Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering
A Python scikit for building and analyzing recommender systems
Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th
Deep recommender models using PyTorch.
Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin
A Python implementation of LightFM, a hybrid recommendation algorithm.
LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al
Fast Python Collaborative Filtering for Implicit Feedback Datasets
Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec
fastFM: A Library for Factorization Machines
Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat
Multi-class confusion matrix library in Python
Table of contents Overview Installation Usage Document Try PyCM in Your Browser Issues & Bug Reports Todo Outputs Dependencies Contribution References
A Comparative Framework for Multimodal Recommender Systems
Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia