12 Repositories
Python parameterized Libraries
Nb workflows - A workflow platform which allows you to run parameterized notebooks programmatically
NB Workflows Description If SQL is a lingua franca for querying data, Jupyter sh
The most comprehensive, exhaustive, parameterized command-line wordle solver.
Wordle Solver The most comprehensive, exhaustive, parameterized command-line wordle solver. Wordle is a real
Implementation of parameterized soft-exponential activation function.
Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are
Searching Parameterized AP Loss for Object Detection.
Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.
Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert
Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration
Python package for visualizing the loss landscape of parameterized quantum algorithms.
orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives
Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".
Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style
Parameterized Explainer for Graph Neural Network
PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP
Orthogonal Over-Parameterized Training
The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great importance. We propose a novel orthogonal over-parameterized training (OPT) framework that can provably minimize the hyperspherical energy which characterizes the diversity of neurons on a hypersphere. See our previous work -- MHE for an in-depth introduction.
Parameterized testing with any Python test framework
Parameterized testing with any Python test framework Parameterized testing in Python sucks. parameterized fixes that. For everything. Parameterized te