2173 Repositories
Python semantic-segmentation-models Libraries
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems
WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b
Fit models to your data in Python with Sherpa.
Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli
Using pytorch to implement unet network for liver image segmentation.
Using pytorch to implement unet network for liver image segmentation.
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization
University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This
Rule-based Customer Segmentation
Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"
Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to
Official PyTorch implementation of SegFormer
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page
ByT5: Towards a token-free future with pre-trained byte-to-byte models
ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation
CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener
FastFormers - highly efficient transformer models for NLU
FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.
English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models
Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models
PEGASUS library Pre-training with Extracted Gap-sentences for Abstractive SUmmarization Sequence-to-sequence models, or PEGASUS, uses self-supervised
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.
The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.
Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.
Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro
Code for the paper "Language Models are Unsupervised Multitask Learners"
Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac
An implementation of model parallel GPT-2 and GPT-3-style models using the mesh-tensorflow library.
GPT Neo 🎉 1T or bust my dudes 🎉 An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here t
Awesome Treasure of Transformers Models Collection
💁 Awesome Treasure of Transformers Models for Natural Language processing contains papers, videos, blogs, official repo along with colab Notebooks. 🛫☑️
Using VapourSynth with super resolution models and speeding them up with TensorRT.
VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo
Face and Body Tracking for VRM 3D models on the web.
Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.
Multi-task yolov5 with detection and segmentation based on yolov5
YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation
SeqFormer: a Frustratingly Simple Model for Video Instance Segmentation SeqFormer SeqFormer: a Frustratingly Simple Model for Video Instance Segmentat
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.
formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li
Convert onnx models to pytorch.
onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta
The python SDK for Eto, the AI focused data platform for teams bringing AI models to production
Eto Labs Python SDK This is the python SDK for Eto, the AI focused data platform for teams bringing AI models to production. The python SDK makes it e
Code for Temporally Abstract Partial Models
Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx
Experiments on continual learning from a stream of pretrained models.
Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.
Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl
SimpleITK is an image analysis toolkit with a large number of components supporting general filtering operations, image segmentation and registration
SimpleITK is an image analysis toolkit with a large number of components supporting general filtering operations, image segmentation and registration
AdamW optimizer for bfloat16 models in pytorch.
Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo
Implementation of U-Net and SegNet for building segmentation
Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.
WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.
The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine
Semantic graph parser based on Categorial grammars
Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels
Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le
Integrate GraphQL with your Pydantic models
graphene-pydantic A Pydantic integration for Graphene. Installation pip install "graphene-pydantic" Examples Here is a simple Pydantic model: import u
RDFLib is a Python library for working with RDF, a simple yet powerful language for representing information.
RDFLib RDFLib is a pure Python package for working with RDF. RDFLib contains most things you need to work with RDF, including: parsers and serializers
Using image super resolution models with vapoursynth and speeding them up with TensorRT
vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"
Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl
Code repository for our paper regarding the L3D dataset.
The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.
TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t
Pydantic models for pywttr and aiopywttr.
Pydantic models for pywttr and aiopywttr.
A minimal, standalone viewer for 3D animations stored as stop-motion sequences of individual .obj mesh files.
ObjSequenceViewer V0.5 A minimal, standalone viewer for 3D animations stored as stop-motion sequences of individual .obj mesh files. Installation: pip
PyTorch implementation of normalizing flow models
PyTorch implementation of normalizing flow models
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts
t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that
PyAbsorp is a python module that has the main focus to help estimate the Sound Absorption Coefficient.
This is a package developed to be use to find the Sound Absorption Coefficient through some implemented models, like Biot-Allard, Johnson-Champoux and
SeqAttack: a framework for adversarial attacks on token classification models
A framework for adversarial attacks against token classification models
Users can free try their models on SIDD dataset based on this code
SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.
PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".
Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge
Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"
RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases, and capable of utilizing different hardware options with no code changes required.
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine
Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)
Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o
Autoregressive Models in PyTorch.
Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto
Models, datasets and tools for Facial keypoints detection
Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.
rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification
Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio
This repo implements a 3D segmentation task for an airport baggage dataset.
3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.
bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit
Explainability of the Implications of Supervised and Unsupervised Face Image Quality Estimations Through Activation Map Variation Analyses in Face Recognition Models
Explainable_FIQA_WITH_AMVA Note This is the official repository of the paper: Explainability of the Implications of Supervised and Unsupervised Face I
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation
SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge
Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.
Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.
Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.
Validation and inference over LinkML instance data using souffle
Translates LinkML schemas into Datalog programs and executes them using Souffle, enabling advanced validation and inference over instance data
Visual Adversarial Imitation Learning using Variational Models (VMAIL)
Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.
SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj
A collection of models, views, middlewares, and forms to help secure a Django project.
Django-Security This package offers a number of models, views, middlewares and forms to facilitate security hardening of Django applications. Full doc
HDMapNet: A Local Semantic Map Learning and Evaluation Framework
HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning
VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation
Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).
A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima
Imbalaced Classification and Robust Semantic Segmentation
Imbalaced Classification and Robust Semantic Segmentation This repo implements two algoritms. The imbalance clibration (IC) algorithm for image classi
[CVPR 2021] MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition
MetaSAug: Meta Semantic Augmentation for Long-Tailed Visual Recognition (CVPR 2021) arXiv Prerequisite PyTorch = 1.2.0 Python3 torchvision PIL argpar
Official PyTorch implementation of RIO
Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-
Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation.
MosaicOS Mosaic of Object-centric Images as Scene-centric Images (MosaicOS) for long-tailed object detection and instance segmentation. Introduction M
Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation
NorCal Normalization Calibration (NorCal) for Long-Tailed Object Detection and Instance Segmentation On Model Calibration for Long-Tailed Object Detec
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models
Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S
Uni-Fold: Training your own deep protein-folding models.
Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.
Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifically, recipes aims to provide- Consistent access to pre-trained SOTA models ready for production- Reference implementations for SOTA research reproducibility, and infrastructure to guarantee correctness, efficiency, and interoperability.
State-of-the-art NLP through transformer models in a modular design and consistent APIs.
Trapper (Transformers wRAPPER) Trapper is an NLP library that aims to make it easier to train transformer based models on downstream tasks. It wraps h
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.
BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"
Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.
This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at [email protected]
A modular application for performing anomaly detection in networks
Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.
LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and
Hashformers is a framework for hashtag segmentation with transformers.
Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models