10 Repositories
Python shap Libraries
TimeSHAP explains Recurrent Neural Network predictions.
TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even
Fast SHAP value computation for interpreting tree-based models
FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X
This component provides a wrapper to display SHAP plots in Streamlit.
streamlit-shap This component provides a wrapper to display SHAP plots in Streamlit.
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.
shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t
🔅 Shapash makes Machine Learning models transparent and understandable by everyone
🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y
Fastshap: A fast, approximate shap kernel
fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes
A game theoretic approach to explain the output of any machine learning model.
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo
Automated Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning
The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. I
A game theoretic approach to explain the output of any machine learning model.
SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:
MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents