Training Atari2600 by Reinforcement Learning
Train Atari2600 and check how it works!
How to Setup
You can setup packages on your local env.
$ make setup
or you can run the docker image.
$ make docker-run
How to Run
$ python run_atari.py --help
usage: run_atari.py [-h] [--env ENV] [--checkpoint CHECKPOINT] [--n-iters N_ITERS] [--n-workers N_WORKERS] [--gpu]
optional arguments:
-h, --help show this help message and exit
--env ENV Atari-2600 env name (Default: Breakout-v0)
--n-iters N_ITERS Training iteration number (Default: 10)
--n-workers N_WORKERS
Number of workers for sampling (Default: 4)
--checkpoint CHECKPOINT
Checkpoint path for inference
--gpu Use GPU (Default: False)
--render Render env during eval
More Atari2600 environments can be found at: https://gym.openai.com/envs/#atari
For Training
$ python run_atari.py --gpu # GPU
$ python run_atari.py # CPU
For Evaluation
$ python run_atari.py --render --checkpoint path-to-checkpoint
For Developers
For clean code, you can run formatting or linting.
$ make format # formatting
$ make lint # linting