Single machine, multiple cards training; mix-precision training; DALI data loader.

Overview

Template

Script Category Description

Category script
comparison script train.py, loader.py
for single-machine-multiple-cards training train_DP.py, train_DDP.py
for mixed-precision training train_amp.py
for DALI data loading loader_DALI.py

Note: The comment # new # in script represents newly added code block (compare to comparison script, e.g., train.py)

Environment

  • CPU: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
  • GPU: RTX 2080Ti
  • OS: Ubuntu 18.04.3 LTS
  • DL framework: Pytorch 1.6.0, Torchvision 0.7.0

Single-machine-multiple-cards training (two cards for example)

train_DP.py -- Parallel computing using nn.DataParallel

Usage:

cd Template/src
python train_DP.py

Superiority:
- Easy to use
- Accelerate training (inconspicuous)
Weakness:
- Unbalanced load
Description:
DataParallel is very convenient to use, we just need to use DataParallel to package the model:

model = ...
model = nn.DataParallel(model)

train_DDP.py -- Parallel computing using torch.distributed

Usage:

cd Template/src
CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train_DDP.py

Superiority:
- balanced load
- Accelerate training (conspicuous)
Weakness:
- Hard to use
Description:
Unlike DataParallel who control multiple GPUs via single-process, distributed creates multiple process. we just need to accomplish one code and torch will automatically assign it to n processes, each running on corresponding GPU.
To config distributed model via torch.distributed, the following steps needed to be performed:

  1. Get current process index:
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
opt = parser.parse_args()
# print(opt.local_rank)
  1. Set the backend and port used for communication between GPUs:
dist.init_process_group(backend='nccl')
  1. Config current device according to the local_rank:
torch.cuda.set_device(opt.local_rank)
  1. Config data sampler:
dataset = ...
sampler = distributed.DistributedSampler(dataset)
dataloader = DataLoader(dataset=dataset, ..., sampler=sampler)
  1. Package the model:
model = ...
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[opt.local_rank])

Mixed-precision training

train_amp.py -- Mixed-precision training using torch.cuda.amp

Usage:

cd Template/src
python train_amp.py

Superiority:
- Easy to use
- Accelerate training (conspicuous for heavy model)
Weakness:
- Accelerate training (inconspicuous for light model)
Description:
Mixed-precision training is a set of techniques that allows us to use fp16 without causing our model training to diverge.
To config mixed-precision training via torch.cuda.amp, the following steps needed to be performed:

  1. Instantiate GradScaler object:
scaler = torch.cuda.amp.GradScaler()
  1. Modify the traditional optimization process:
# Before:
optimizer.zero_grad()
preds = model(imgs)
loss = loss_func(preds, labels)
loss.backward()
optimizer.step()

# After:
optimizer.zero_grad()
with torch.cuda.amp.autocast():
    preds = model(imgs)
    loss = loss_func(preds, labels)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

DALI data loading

loader_DALI.py -- Data loading using nvidia.dali

Prerequisite:
- NVIDIA Driver supporting CUDA 10.0 or later (i.e., 410.48 or later driver releases)
- PyTorch 0.4 or later
- Data organization format that matches the code, the format that matches the loader_DALI.py is as follows:
 /dataset / train or test / img or gt / sub_dirs / imgs [View]
Usage:

pip install --extra-index-url https://developer.download.nvidia.com/compute/redist --upgrade nvidia-dali-cuda102
cd Template/src
python loader_DALI.py --data_source /path/to/dataset

Superiority:
- Easy to use
- Accelerate data loading
Weakness:
- Occupy video memory
Description:
NVIDIA Data Loading Library (DALI) is a collection of highly optimized building blocks and an execution engine that accelerates the data pipeline for computer vision and audio deep learning applications.
To load dataset using DALI, the following steps needed to be performed:

  1. Config external input iterator:
eii = ExternalInputIterator(data_source=opt.data_source, batch_size=opt.batch_size, shuffle=True)
# A demo of external input iterator
class ExternalInputIterator(object):
    def __init__(self, data_source, batch_size, shuffle):
        self.batch_size = batch_size
        
        img_paths = sorted(glob.glob(data_source + '/train' + '/blurry' + '/*/*.*'))
        gt_paths = sorted(glob.glob(data_source + '/train' + '/sharp' + '/*/*.*'))
        self.paths = list(zip(*(img_paths,gt_paths)))
        if shuffle:
            random.shuffle(self.paths)

    def __iter__(self):
        self.i = 0
        return self

    def __next__(self):
        imgs = []
        gts = []

        if self.i >= len(self.paths):
            self.__iter__()
            raise StopIteration

        for _ in range(self.batch_size):
            img_path, gt_path = self.paths[self.i % len(self.paths)]
            imgs.append(np.fromfile(img_path, dtype = np.uint8))
            gts.append(np.fromfile(gt_path, dtype = np.uint8))
            self.i += 1
        return (imgs, gts)

    def __len__(self):
        return len(self.paths)

    next = __next__
  1. Config pipeline:
pipe = externalSourcePipeline(batch_size=opt.batch_size, num_threads=opt.num_workers, device_id=0, seed=opt.seed, external_data = eii, resize=opt.resize, crop=opt.crop)
# A demo of pipeline
@pipeline_def
def externalSourcePipeline(external_data, resize, crop):
    imgs, gts = fn.external_source(source=external_data, num_outputs=2)
    
    crop_pos = (fn.random.uniform(range=(0., 1.)), fn.random.uniform(range=(0., 1.)))
    flip_p = (fn.random.coin_flip(), fn.random.coin_flip())
    
    imgs = transform(imgs, resize, crop, crop_pos, flip_p)
    gts = transform(gts, resize, crop, crop_pos, flip_p)
    return imgs, gts

def transform(imgs, resize, crop, crop_pos, flip_p):
    imgs = fn.decoders.image(imgs, device='mixed')
    imgs = fn.resize(imgs, resize_y=resize)
    imgs = fn.crop(imgs, crop=(crop,crop), crop_pos_x=crop_pos[0], crop_pos_y=crop_pos[1])
    imgs = fn.flip(imgs, horizontal=flip_p[0], vertical=flip_p[1])
    imgs = fn.transpose(imgs, perm=[2, 0, 1])
    imgs = imgs/127.5-1
    
    return imgs
  1. Instantiate DALIGenericIterator object:
dgi = DALIGenericIterator(pipe, output_map=["imgs", "gts"], last_batch_padded=True, last_batch_policy=LastBatchPolicy.PARTIAL, auto_reset=True)
  1. Read data:
for i, data in enumerate(dgi):
    imgs = data[0]['imgs']
    gts = data[0]['gts']
You might also like...
 🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python and HoloViz Panel.

fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set.

A data parser for the internal syncing data format used by Fog of World.
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data structure.

Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter. Fancy data functions that will make your life as a data scientist easier.
Fancy data functions that will make your life as a data scientist easier.

WhiteBox Utilities Toolkit: Tools to make your life easier Fancy data functions that will make your life as a data scientist easier. Installing To ins

A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Owner
null
Data Science Environment Setup in single line

datascienv is package that helps your to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries

Ashish Patel 55 Dec 16, 2022
Multiple Pairwise Comparisons (Post Hoc) Tests in Python

scikit-posthocs is a Python package that provides post hoc tests for pairwise multiple comparisons that are usually performed in statistical data anal

Maksim Terpilowski 264 Dec 30, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 3, 2023
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

null 898 Jan 9, 2023
Important dataframe statistics with a single command

quick_eda Receiving dataframe statistics with one command Project description A python package for Data Scientists, Students, ML Engineers and anyone

Sven Eschlbeck 2 Dec 19, 2021
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

Coiled 102 Nov 10, 2022
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 5, 2022
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

null 1 Feb 11, 2022
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022