Neural Nano-Optics for High-quality Thin Lens Imaging

Overview

Neural Nano-Optics for High-quality Thin Lens Imaging

Project Page | Paper | Data

DOI: 10.5281/zenodo.47223

Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-Hwan Baek, Arka Majumdar, Felix Heide

This code implements a differentiable proxy model for simulating meta-optics and a neural feature propagation deconvolution method. These components are optimized end-to-end using machine learning optimizers.

The experimental results from the manuscript and the supplemental information are reproducible with this implementation. The proposed differentiable proxy model, neural feature propagation, and end-to-end optimization framework are implemented completely in TensorFlow, without dependency on third-party libraries.

Training

To perform end-to-end training (of meta-optic and deconvolution) execute the 'run_train.sh' script. The model checkpoint which includes saved parameters for both the meta-optic and deconvolution will be saved to 'training/ckpt'. The folder 'training/data' contains a subset of the training and test data that we used for optimizing our end-to-end imaging pipeline.

Testing

To perform inference on real-world captures launch the "test.ipynb" notebook in Jupyter Notebook and step through the cells. The notebook will load in a finetuned checkpoint of our neural feature propagation network from 'experimental/ckpt' which will process captured sensor measurements located in 'experimental/data'. The reconstructed images will be displayed within the notebook.

Additional captured sensor measurements can be found in the data repository.

Requirements

This code has been tested with Python 3.6.10 using TensorFlow 2.2.0 running on Linux with an Nvidia P100 GPU with 16GB RAM.

We installed the following library packages to run this code:

TensorFlow >= 2.2
TensorFlow Probability
TensorFlow Addons
Numpy
Scipy
matplotlib
jupyter-notebook

Citation

If you find our work useful in your research, please cite:

@article{Tseng2021NeuralNanoOptics,
    title   = "Neural Nano-Optics for High-quality Thin Lens Imaging",
    author  = "Tseng, Ethan and Colburn, Shane and Whitehead, James and Huang, Luocheng
               and Baek, Seung-Hwan and Majumdar, Arka and Heide, Felix",
    journal = "Nature Communications",
    volume  = ,
    number  = ,
    pages   = ,
    year    = 2021
}

License

Our code is licensed under BSL-1. By downloading the software, you agree to the terms of this License. The training data in the folder 'training/data' comes from the INRIA Holidays Dataset.

You might also like...
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

Predict bus arrival time using VertexAI and Nvidia's Jetson Nano
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Comments
  • I want to ask you some questions.

    I want to ask you some questions.

    嗨~ I am studying your article, but for a beginner, there are too many things I don't understand. I want to ask you the details of the specific mapping between the phase function and the scatterer structure.Thank you very much.

    opened by Rishell 0
  • Problem with training

    Problem with training

    Hello, thank you very much for the code, but I found some problems while using it. At that time when I was training with the source code and data, I found that the result of the generator was all white. Can you tell me what could be the reason for this?

    opened by FZfangzheng 0
Releases(v1.0.0)
Owner
Ethan Tseng
Ethan Tseng
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 3, 2022
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 9, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 2, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

?? nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 9, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

null 20 Dec 15, 2022