Deep High Dynamic Range Imaging Benchmark
This repository is the pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms. Please find the details below.
Maintenance and Contributors
Requirements
- pytorch==1.4.0
- opencv-python
- scikit-image==0.17.2
ToDo List
- adaptive padding
- add more baselines
Supported Algorthms
- DeepHDR [1]
- NHDRRNet [2]
- AHDR [3]
- DAHDR [4]
Instruction
- download the Kalantari dataset via: [link], and organize the dataset as follows:
dataset
│
└───Traning
│ │ 001
│ │ 002
│ │ 003
│ | ...
│
└───Test
│ 001
│ 002
| 003
| ...
- train the network [unet|nhdrrnet|ahdr|dahdr]:
python train.py --net-type unet --cuda --batch-size 8 --lr 0.0002
- continue training using the pre-saved checkpoint:
python train.py --net-type unet --cuda --resume --last-ckpt-path <the saved ckpt path>
- test the model and save HDR images:
python eval_metric.py --net-type unet --model-path <the saved ckpt path> --cuda --save-image
Pre-trained Models
The pre-trained models can be downloaded from the released page.
Performance
DeepHDR[1] | NHDRRNet[2] | AHDR[3] | DAHDR[4] | |
---|---|---|---|---|
PSNR-$\mu$ | 42.2695 | 42.4769 | 43.5742 | 43.5240 |
SSIM-$\mu$ | 0.9941 | 0.9942 | 0.9956 | 0.9956 |
PSNR-L | 40.0627 | 40.1978 | 41.1551 | 40.7534 |
SSIM-L | 0.9892 | 0.9889 | 0.9903 | 0.9905 |
Acknowledgements
@elliottwu for DeepHDR
@qingsenyangit for AHDRNet
@Galaxies99 for NHDRRNet details
References
[1] Deep High Dynamic Range Imaging with Large Foreground Motions
[2] Deep HDR Imaging via A Non-Local Network
[3] Attention-guided Network for Ghost-free High Dynamic Range Imaging
[4] Dual-Attention-Guided Network for Ghost-Free High Dynamic Range Imaging