Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

Overview

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021)

This is the official implementation of PWCLO-Net (CVPR2021), an end-to-end deep network for LiDAR odometry created by Guangming Wang, Xinrui Wu, Zhe Liu and Hesheng Wang.

Citation

If you find our work useful in your research, please cite:

    @InProceedings{Wang_2021_CVPR,
        author    = {Wang, Guangming and Wu, Xinrui and Liu, Zhe and Wang, Hesheng},
        title     = {PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization},
        booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
        month     = {June},
        year      = {2021},
        pages     = {15910-15919}
    }

Abstract

A novel 3D point cloud learning model for deep LiDAR odometry, named PWCLO-Net, using hierarchical embedding mask optimization is proposed in this paper. In this model, the Pyramid, Warping, and Cost volume (PWC) structure for the LiDAR odometry task is built to refine the estimated pose in a coarse-to-fine approach hierarchically. An attentive cost volume is built to associate two point clouds and obtain embedding motion patterns. Then, a novel trainable embedding mask is proposed to weigh the local motion patterns of all points to regress the overall pose and filter outlier points. The estimated current pose is used to warp the first point cloud to bridge the distance to the second point cloud, and then the cost volume of the residual motion is built. At the same time, the embedding mask is optimized hierarchically from coarse to fine to obtain more accurate filtering information for pose refinement. The trainable pose warp-refinement process is iteratively used to make the pose estimation more robust for outliers. The superior performance and effectiveness of our LiDAR odometry model are demonstrated on KITTI odometry dataset. Our method outperforms all recent learning-based methods and outperforms the geometry-based approach, LOAM with mapping optimization, on most sequences of KITTI odometry dataset.

Prequisites

python 3.6.8
CUDA 9.0
TensorFlow 1.12.0  
numpy 1.16.1  
g++ 5.4.0 

Usage

Compile Customized TF Operators

The TF operators are included under tf_ops, you need to compile them first by make under each ops subfolder (check Makefile). Update arch in the Makefiles for different CUDA Compute Capability that suits your GPU if necessary.

cd ./tf_ops/sampling
make
cd ../grouping
make
cd ..

Datasets

We use KITTI odometry dataset in our experiments. The ground truth of pose and relative transformation are stored in ground_truth_pose and ground_truth_pose/kitti_T_diff. The data of the KITTI odometry dataset should be organized as follows:

data_root
├── 00
│   ├── velodyne
│   ├── calib.txt
├── 01
├── ...

Training

Train the network by running

sh command.sh  

Please reminder to specify the mode(train), GPU,model(path to PWCLONet model), data_root,log_dir, train_list(sequences for training), val_list(sequences for validation) in the scripts.

The training results and best model will be saved in log_dir.

Testing

Please run

sh command.sh 

Train the network by running sh command.sh please reminder to specify the mode(test), GPU,model(path to PWCLONet model), data_root,checkpoint_path(path to pre-trained model for testing), log_dir, test_list(sequences for testing).

Quantitative results:

Acknowledgments

We thank all the CVPR reviewers and the following open-source project for the help of the implementations:

You might also like...
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

Code for the CVPR2021 paper
Code for the CVPR2021 paper "Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition"

Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition This repository contains code for the CVPR2021 paper "Patch-NetV

The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

PyTorch code for our paper
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Pytorch implementation of CVPR2021 paper
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

Comments
Owner
Intelligent Robotics and Machine Vision Lab
Intelligent Robotics and Machine Vision Lab at Shanghai Jiao Tong University
Intelligent Robotics and Machine Vision Lab
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 5, 2023
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

null 105 Dec 23, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

null 217 Jan 3, 2023
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

null 122 Dec 24, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

null 153 Dec 14, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" ?? ?? . ?? Re

Shuai Shen 87 Dec 28, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 9, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022