Benchmarking Pipeline for Prediction of Protein-Protein Interactions

Related tags

Deep Learning B4PPI
Overview

B4PPI

Benchmarking Pipeline for the Prediction of Protein-Protein Interactions

Generic badge

Maintenance Open Source? Yes!

How this benchmarking pipeline has been built, and how to use it, is detailed in our preprint here (please cite it if you find this work useful!).

A minimal example is available here, and the list of requirements there.

How to use the gold standard

All the data files are in data, most of them are available as csv (sep='|') and pickled pandas DataFrames (sometimes the csv file may be missing due to file size constraints on GitHub).

The gold standard, without pre-processed features, can be loaded using:

goldStandard = pd.read_csv(
    os.path.join('data', 'benchmarkingGS_v1-0.csv'),
    sep='|'
)

Or with the pre-processed features:

goldStandard_with_featuresSeq = pd.read_pickle(
    os.path.join('data', 'benchmarkingGS_v1-0_similarityMeasure_sequence_v3-1.pkl')
)

image

  • UniProtIDs are used for both proteins A and B.
  • isInteraction is the ground truth from the IntAct database (1 = interacting proteins, 0 = non-interacting proteins).
  • trainTest is the split between training set (train), first testing set T1 (test1) and second testing set T2 (test2).
  • Pre-processed features are explained in the manuscript.

Training and evaluation can then be done normally. The code from the preprint is in the Training section.

How to cite this work

Lannelongue L., Inouye M., Construction of in silico protein-protein interaction networks across different topologies using machine learning, 2022, BioArxiv

Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

CC BY 4.0

CC BY 4.0

Credits

You might also like...
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

 Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking
Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchm

 Molecular Sets (MOSES): A benchmarking platform for molecular generation models
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

Code for the paper
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Evaluation and Benchmarking of Speech Super-resolution Methods
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Owner
Loïc Lannelongue
PhD student in AI for medicine | On the fence between machine learning and biology
Loïc Lannelongue
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

null 44 Dec 30, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

null 1 Jan 10, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

null 268 Jan 1, 2023
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 6, 2022