Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks
by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and Jaehoon Yu
Accepted at The British Machine Vision Conference (BMVC) 2021.
The code in this repository was originally developed from a fork of hidden-networks.
Requirements
Python 3.6 or higher. CUDA 11.0.
For library requirements see requirements.txt
.
Usage
Experiment configurations are defined in yaml files under configs/
.
These configurations can be overridden by setting parameters directly through arguments (see args.py
).
Example 1: HFN-ResNet50, top-k%=30%, CIFAR100
python3 main.py --config configs/CIFAR100/HFN_ResNet50_3_4.yaml --multigpu 0
Example 2: HFN-ResNet50, top-k%=50%, CIFAR100, 100 epochs
python3 main.py --config configs/CIFAR100/HFN_ResNet50_3_4.yaml --multigpu 0 --top_k=0.5 --epochs 100