TDN: Temporal Difference Networks for Efficient Action Recognition

Overview

TDN: Temporal Difference Networks for Efficient Action Recognition

1

Overview

We release the PyTorch code of the TDN(Temporal Difference Networks). This code is based on the TSN and TSM codebase. The core code to implement the Temporal Difference Module are ops/base_module.py and ops/tdn_net.py.

🔥 [NEW!] We have released the PyTorch code of TDN.

Prerequisites

The code is built with following libraries:

Data Preparation

We have successfully trained TDN on Kinetics400, UCF101, HMDB51, Something-Something-V1 and V2 with this codebase.

  • The processing of Something-Something-V1 & V2 can be summarized into 3 steps:

    1. Extract frames from videos(you can use ffmpeg to get frames from video)
    2. Generate annotations needed for dataloader (" " in annotations) The annotation usually includes train.txt and val.txt. The format of *.txt file is like:
      frames/video_1 num_frames label_1
      frames/video_2 num_frames label_2
      frames/video_3 num_frames label_3
      ...
      frames/video_N num_frames label_N
      
    3. Add the information to ops/dataset_configs.py
  • The processing of Kinetics400 can be summarized into 2 steps:

    1. Generate annotations needed for dataloader (" " in annotations) The annotation usually includes train.txt and val.txt. The format of *.txt file is like:
      frames/video_1.mp4  label_1
      frames/video_2.mp4  label_2
      frames/video_3.mp4  label_3
      ...
      frames/video_N.mp4  label_N
      
    2. Add the information to ops/dataset_configs.py

Model Zoo

Here we provide some off-the-shelf pretrained models. The accuracy might vary a little bit compared to the paper, since the raw video of Kinetics downloaded by users may have some differences.

Something-Something-V1

Model Frames x Crops x Clips Top-1 Top-5 checkpoint
TDN-ResNet50 8x1x1 52.3% 80.6% link
TDN-ResNet50 16x1x1 53.9% 82.1% link

Something-Something-V2

Model Frames x Crops x Clips Top-1 Top-5 checkpoint
TDN-ResNet50 8x1x1 64.0% 88.8% link
TDN-ResNet50 16x1x1 65.3% 89.7% link

Kinetics400

Model Frames x Crops x Clips Top-1 (30 view) Top-5 (30 view) checkpoint
TDN-ResNet50 8x3x10 76.6% 92.8% link
TDN-ResNet50 16x3x10 77.5% 93.2% link
TDN-ResNet101 8x3x10 77.5% 93.6% link
TDN-ResNet101 16x3x10 78.5% 93.9% link

Testing

  • For center crop single clip, the processing of testing can be summarized into 2 steps:
    1. Run the following testing scripts:
      CUDA_VISIBLE_DEVICES=0 python3 test_models_center_crop.py something \
      --archs='resnet50' --weights   --test_segments=8  \
      --test_crops=1 --batch_size=16  --gpus 0 --output_dir  -j 4 --clip_index=1
      
    2. Run the following scripts to get result from the raw score:
      python3 pkl_to_results.py --num_clips 1 --test_crops 1 --output_dir   
      
  • For 3 crops, 10 clips, the processing of testing can be summarized into 2 steps:
    1. Run the following testing scripts for 10 times(clip_index from 0 to 9):
      CUDA_VISIBLE_DEVICES=0 python3 test_models_three_crops.py  kinetics \
      --archs='resnet50' --weights   --test_segments=8 \
      --test_crops=3 --batch_size=16 --full_res --gpus 0 --output_dir   \
      -j 4 --clip_index 
      
    2. Run the following scripts to ensemble the raw score of the 30 views:
      python pkl_to_results.py --num_clips 10 --test_crops 3 --output_dir  
      

Training

This implementation supports multi-gpu, DistributedDataParallel training, which is faster and simpler.

  • For example, to train TDN-ResNet50 on Something-Something-V1 with 8 gpus, you can run:
    python -m torch.distributed.launch --master_port 12347 --nproc_per_node=8 \
                main.py  something  RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.02 \
                --lr_scheduler step --lr_steps  30 45 55 --epochs 60 --batch-size 16 \
                --wd 5e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb 
    
  • For example, to train TDN-ResNet50 on Kinetics400 with 8 gpus, you can run:
    python -m torch.distributed.launch --master_port 12347 --nproc_per_node=8 \
            main.py  kinetics RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.02 \
            --lr_scheduler step  --lr_steps 50 75 90 --epochs 100 --batch-size 16 \
            --wd 1e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb 
    

Acknowledgements

We especially thank the contributors of the TSN and TSM codebase for providing helpful code.

License

This repository is released under the Apache-2.0. license as found in the LICENSE file.

Citation

If you think our work is useful, please feel free to cite our paper 😆 :

@article{wang2020tdn,
      title={TDN: Temporal Difference Networks for Efficient Action Recognition}, 
      author={Limin Wang and Zhan Tong and Bin Ji and Gangshan Wu},
      journal={arXiv preprint arXiv:2012.10071},
      year={2020}
}
Comments
  • Problems related to model performance

    Problems related to model performance

    Hi~ I have trained a TDN(ResNet50+8frame) on something-v1 as well as something-v2. However, there exists some gaps between the results we do and the reported one. On something-v2, best Prec@1 is only 61.567. We follow the command and process that you mentioned in README.md. I wonder that maybe some hyper-parameters settings in our experiments is not the same as your experiments. 截屏2022-01-19 下午3 12 31

    opened by jwfanDL 10
  • Training with my own datasets

    Training with my own datasets

    I follow the steps made my own datasets with kinetics400 format,one GPU, I set batch_size=16,and but i met a question when trained,this is error code: train_loader: <torch.utils.data.dataloader.DataLoader object at 0x7f90f6298460> Traceback (most recent call last): File "main.py", line 361, in main() File "main.py", line 211, in main train_loss, train_top1, train_top5 = train(train_loader, model, criterion, optimizer, epoch=epoch, logger=logger, scheduler=scheduler) File "main.py", line 261, in train for i, (input, target) in enumerate(train_loader): File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 363, in next data = self._next_data() File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 989, in _next_data return self._process_data(data) File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1014, in _process_data data.reraise() File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/_utils.py", line 395, in reraise raise self.exc_type(msg) UnboundLocalError: Caught UnboundLocalError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 185, in _worker_loop data = fetcher.fetch(index) File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/shtf/ysir/pycharmprojects/TDN-main/ops/dataset.py", line 162, in getitem video_list = decord.VideoReader(video_path) UnboundLocalError: local variable 'video_path' referenced before assignment

    Traceback (most recent call last): File "/home/shtf/anaconda3/envs/py38/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/shtf/anaconda3/envs/py38/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/distributed/launch.py", line 261, in main() File "/home/shtf/anaconda3/envs/py38/lib/python3.8/site-packages/torch/distributed/launch.py", line 256, in main raise subprocess.CalledProcessError(returncode=process.returncode, subprocess.CalledProcessError: Command '['/home/shtf/anaconda3/envs/py38/bin/python', '-u', 'main.py', '--local_rank=0', 'kinetics', 'RGB', '--arch', 'resnet50', '--num_segments', '8', '--gd', '20', '--lr', '0.02', '--lr_scheduler', 'step', '--lr_steps', '50', '75', '90', '--epochs', '100', '--batch-size', '16', '--wd', '1e-4', '--dropout', '0.5', '--consensus_type=avg', '--eval-freq=1', '-j', '4', '--npb']' returned non-zero exit status 1 I have no idea about this ,thank you

    opened by YLiyu 8
  • BatchSize How to set in a single card?

    BatchSize How to set in a single card?

    My test result is 6% lower than yours. How is your batch size set in 8 cards. How do you think batch size should be set in a single card?Thanks for your reply!

    opened by 1145335145 7
  • One question

    One question

    Hi! I tested sthv1 on two GTX Titan X as follows: python -m torch.distributed.launch --master_port 12347 --nproc_per_node=2
    main.py something RGB --arch resnet50 --num_segments 8 --gd 20 --lr 0.005
    --lr_scheduler step --lr_steps 30 45 55 --epochs 60 --batch-size 16
    --wd 5e-4 --dropout 0.5 --consensus_type=avg --eval-freq=1 -j 4 --npb But the accuracy in modelzoom is not obtained, In addition, I tried to implement the core code of TDN on the basis of TSM in mmaction2, and only achieved 48.9%. What details did I ignore? Look forward to your reply!

    opened by wanlmq6165163 7
  • One question

    One question

    Hi, I run the following testing scripts CUDA_VISIBLE_DEVICES=1 python test_models_center_crop.py something --archs='resnet50' --weights checkpoints/best.pth.tar --test_segments=8 --test_crops=1 --batch_size=16 --gpus 0 --output_dir output/8f -j 4 --clip_index=0 in which the best.pth.tar is downloaded from your sthv1 model zoo, but I got the results that Overall Prec@1 0.22% Prec@5 2.40%. I wonder what mistakes might I make...

    opened by AllenM97 7
  • Lower performance on Kinetics using model zoo TDN-ResNet50 checkpoint

    Lower performance on Kinetics using model zoo TDN-ResNet50 checkpoint

    I followed your Testing instructions (3-crops, 10-clips) and evaluated model zoo TDN-ResNet50 checkpoint on Kinetics. The only difference is that I use extracted frames as you process Something-V1&V2 instead of raw video inputs you process Kinetics. I ran the Testing twice and got 75.05/91.95 and 75.10/91.97 respectively. I know there is some dataset differences but it should not bring such a big performance gap. Would you kindly check if the Testing setting is the one you obtain the reported performance?

    opened by caidonkey 7
  • Pretrained models

    Pretrained models

    Thanks for sharing the code. After downloading pretrained models, I found that the files is damaged and can not be used. Please check and provide available models.Thanks!

    opened by LV0913 6
  • decord._ffi.base.DECORDError: [16:56:24] /github/workspace/src/video/video_reader.cc:151: Check failed: st_nb >= 0 (-1381258232 vs. 0) ERROR cannot find video stream with wanted index: -1

    decord._ffi.base.DECORDError: [16:56:24] /github/workspace/src/video/video_reader.cc:151: Check failed: st_nb >= 0 (-1381258232 vs. 0) ERROR cannot find video stream with wanted index: -1

    when I trained in kinetics 400, it happened:

    `=> base model: resnet50 kinetics: 400 classes [06/22 16:52:42 TDN]: storing name: TDN__kinetics_RGB_resnet50_avg_segment8_e100

    Initializing TSN with base model: resnet50. TSN Configurations: input_modality: RGB num_segments: 8 new_length: 1 consensus_module: avg dropout_ratio: 0.5 img_feature_dim: 256 => base model: resnet50 [06/22 16:52:43 TDN]: [TDN-resnet50]group: first_conv_weight has 1 params, lr_mult: 1, decay_mult: 1 [06/22 16:52:43 TDN]: [TDN-resnet50]group: first_conv_bias has 1 params, lr_mult: 2, decay_mult: 0 [06/22 16:52:43 TDN]: [TDN-resnet50]group: normal_weight has 143 params, lr_mult: 1, decay_mult: 1 [06/22 16:52:43 TDN]: [TDN-resnet50]group: normal_bias has 64 params, lr_mult: 2, decay_mult: 0 [06/22 16:52:43 TDN]: [TDN-resnet50]group: BN scale/shift has 232 params, lr_mult: 1, decay_mult: 0 [06/22 16:52:43 TDN]: [TDN-resnet50]group: custom_ops has 0 params, lr_mult: 1, decay_mult: 1 video number:234619 video number:19760 video number:234619 video number:19760 libibverbs: Warning: couldn't open config directory '/etc/libibverbs.d'. libibverbs: Warning: couldn't open config directory '/etc/libibverbs.d'. [06/22 16:52:54 TDN]: Epoch: [0][0/14663], lr: 0.02000 Time 6.965 (6.965) Data 3.851 (3.851) Loss 5.9819 (5.9819) Prec@1 0.000 (0.000) Prec@5 0.000 (0.000) [06/22 16:53:05 TDN]: Epoch: [0][20/14663], lr: 0.02000 Time 0.951 (0.853) Data 0.000 (0.183) Loss 6.1689 (6.5195) Prec@1 0.000 (0.000) Prec@5 0.000 (0.000) [06/22 16:53:19 TDN]: Epoch: [0][40/14663], lr: 0.02000 Time 0.555 (0.782) Data 0.000 (0.094) Loss 6.0868 (6.3538) Prec@1 0.000 (0.305) Prec@5 0.000 (0.305) [06/22 16:53:34 TDN]: Epoch: [0][60/14663], lr: 0.02000 Time 0.476 (0.761) Data 0.000 (0.063) Loss 6.1435 (6.2322) Prec@1 0.000 (0.205) Prec@5 0.000 (0.820) [06/22 16:53:47 TDN]: Epoch: [0][80/14663], lr: 0.02000 Time 0.908 (0.742) Data 0.000 (0.048) Loss 5.7867 (6.1691) Prec@1 0.000 (0.309) Prec@5 0.000 (0.772) [06/22 16:54:01 TDN]: Epoch: [0][100/14663], lr: 0.02000 Time 0.554 (0.729) Data 0.000 (0.038) Loss 5.7885 (6.1329) Prec@1 0.000 (0.371) Prec@5 0.000 (1.114) [06/22 16:54:14 TDN]: Epoch: [0][120/14663], lr: 0.02000 Time 0.680 (0.719) Data 0.000 (0.032) Loss 6.0279 (6.1143) Prec@1 0.000 (0.310) Prec@5 0.000 (0.930) [06/22 16:54:27 TDN]: Epoch: [0][140/14663], lr: 0.02000 Time 0.491 (0.708) Data 0.000 (0.027) Loss 5.8971 (6.0965) Prec@1 0.000 (0.266) Prec@5 0.000 (1.064) [06/22 16:54:41 TDN]: Epoch: [0][160/14663], lr: 0.02000 Time 0.519 (0.704) Data 0.000 (0.024) Loss 5.8185 (6.0764) Prec@1 0.000 (0.311) Prec@5 12.500 (1.242) [06/22 16:54:54 TDN]: Epoch: [0][180/14663], lr: 0.02000 Time 0.613 (0.702) Data 0.000 (0.021) Loss 5.8592 (6.0648) Prec@1 0.000 (0.345) Prec@5 0.000 (1.312) [06/22 16:55:08 TDN]: Epoch: [0][200/14663], lr: 0.02000 Time 0.519 (0.699) Data 0.000 (0.019) Loss 5.9776 (6.0537) Prec@1 0.000 (0.435) Prec@5 0.000 (1.368) [06/22 16:55:21 TDN]: Epoch: [0][220/14663], lr: 0.02000 Time 0.500 (0.697) Data 0.000 (0.018) Loss 6.0370 (6.0481) Prec@1 0.000 (0.396) Prec@5 0.000 (1.527) [06/22 16:55:35 TDN]: Epoch: [0][240/14663], lr: 0.02000 Time 0.714 (0.698) Data 0.000 (0.016) Loss 5.8629 (6.0379) Prec@1 0.000 (0.363) Prec@5 12.500 (1.556) [06/22 16:55:49 TDN]: Epoch: [0][260/14663], lr: 0.02000 Time 0.565 (0.695) Data 0.000 (0.015) Loss 5.8003 (6.0317) Prec@1 0.000 (0.431) Prec@5 0.000 (1.628) [06/22 16:56:13 TDN]: Epoch: [0][280/14663], lr: 0.02000 Time 0.572 (0.733) Data 0.000 (0.014) Loss 5.8998 (6.0280) Prec@1 0.000 (0.445) Prec@5 0.000 (1.601) [06/22 16:56:27 TDN]: Epoch: [0][300/14663], lr: 0.02000 Time 0.524 (0.731) Data 0.000 (0.013) Loss 5.8075 (6.0214) Prec@1 0.000 (0.415) Prec@5 0.000 (1.620) Traceback (most recent call last): File "main.py", line 361, in main() File "main.py", line 211, in main train_loss, train_top1, train_top5 = train(train_loader, model, criterion, optimizer, epoch=epoch, logger=logger, scheduler=scheduler) File "main.py", line 260, in train for i, (input, target) in enumerate(train_loader): File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 363, in next data = self._next_data() File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 971, in _next_data return self._process_data(data) File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 1014, in _process_data data.reraise() File "/usr/local/lib/python3.6/dist-packages/torch/_utils.py", line 395, in reraise raise self.exc_type(msg) decord._ffi.base.DECORDError: Caught DECORDError in DataLoader worker process 2. Original Traceback (most recent call last): File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 185, in _worker_loop data = fetcher.fetch(index) File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in data = [self.dataset[idx] for idx in possibly_batched_index] File "/workspace/mnt/storage/kanghaidong/new_video_project/video_project/TDN/ops/dataset.py", line 166, in getitem video_list = decord.VideoReader(video_path) File "/usr/local/lib/python3.6/dist-packages/decord/video_reader.py", line 55, in init uri, ctx.device_type, ctx.device_id, width, height, num_threads, 0, fault_tol) File "/usr/local/lib/python3.6/dist-packages/decord/_ffi/_ctypes/function.py", line 175, in call ctypes.byref(ret_val), ctypes.byref(ret_tcode))) File "/usr/local/lib/python3.6/dist-packages/decord/_ffi/base.py", line 78, in check_call raise DECORDError(err_str) decord._ffi.base.DECORDError: [16:56:24] /github/workspace/src/video/video_reader.cc:151: Check failed: st_nb >= 0 (-1381258232 vs. 0) ERROR cannot find video stream with wanted index: -1` how to solve it?

    opened by NEUdeep 6
  • How long did the model converge in Kinetics400 on 8 V100?

    How long did the model converge in Kinetics400 on 8 V100?

    Hi, Here I come again! I've implemented TDN using mmaction2. However, it will take 4 days to finish 100 epochs. I'm wondering if my code is inefficient.

    opened by SCZwangxiao 5
  • where is the short term TDM part?

    where is the short term TDM part?

    Hi, thank your for sharing codes. I am reading your code and I only find the long term TDM as mentioned in the paper in base_module.py and the short term TDM is not found, so where is it?

    Thank you very much.

    opened by Holmes-GU 5
  • Problem of testing

    Problem of testing

    For 3 crops, 10 clips: the following script should be run 10 times, Is --weights <your_checkpoint_path> always the same? If --weights <your_checkpoint_path> does not change, the result of testing remains the same. If --weights <your_checkpoint_path> changes with each clips, Does that mean i need to train the network 10 times.

    CUDA_VISIBLE_DEVICES=0 python3 test_models_three_crops.py kinetics \ --archs='resnet50' --weights <your_checkpoint_path> --test_segments=8 \ --test_crops=3 --batch_size=16 --full_res --gpus 0 --output_dir <your_pkl_path> \ -j 4 --clip_index <your_clip_index>

    opened by xiaofengWang-CCNU 4
  • train new dataset with pretrained model

    train new dataset with pretrained model

    hello doctor.I TRAIN tdn with new data with pretrain model,but it easily go converge,in the first epoch,does something wrong?besides,when i train,it notice below,it is ok? [12/08 15:20:34] TDN INFO: #### Notice: keys that failed to load: {'module.base_model.layer3_bak.3.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer3_bak.3.mse.bn3_smallscale2.running_var', 'module.base_model.layer2_bak.1.mse.conv3.weight', 'base_model.layer2_bak.2.shift.conv.weight', 'base_model.layer3_bak.1.mse.bn3_smallscale4.running_var', 'module.base_model.layer3_bak.0.bn3.num_batches_tracked', 'module.base_model.layer3_bak.1.mse.bn3.running_var', 'base_model.layer3_bak.5.mse.bn1.weight', 'base_model.resnext_layer1.0.bn1.running_var', 'base_model.layer3_bak.0.bn2.num_batches_tracked', 'module.base_model.layer2_bak.2.conv1.bias', 'module.base_model.resnext_layer1.2.conv2.weight', 'module.base_model.layer3_bak.0.mse.bn3_smallscale2.running_mean', 'base_model.layer2_bak.2.mse.bn3_smallscale2.bias', 'base_model.layer2_bak.3.mse.bn3_smallscale4.bias', 'base_model.layer2_bak.2.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.resnext_layer1.0.bn3.weight', 'module.base_model.layer2_bak.0.bn1.num_batches_tracked', 'module.base_model.layer1_bak.2.bn1.bias', 'base_model.layer3_bak.2.bn2.num_batches_tracked', 'base_model.layer3_bak.3.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer3_bak.5.mse.bn3_smallscale4.running_mean', 'base_model.layer2_bak.2.conv1.bias', 'module.base_model.layer3_bak.0.mse.bn1.bias', 'base_model.layer4_bak.0.mse.bn1.running_mean', 'base_model.layer1_bak.0.downsample.1.bias', 'base_model.layer2_bak.0.bn1.weight', 'base_model.layer2_bak.1.bn2.running_var', 'base_model.layer3_bak.3.bn1.weight', 'base_model.resnext_layer1.2.conv1.weight', 'base_model.resnext_layer1.0.downsample.1.num_batches_tracked', 'base_model.layer3_bak.5.conv1.weight', 'base_model.layer4_bak.0.downsample.1.running_mean', 'module.base_model.layer3_bak.4.bn3.running_mean', 'module.base_model.layer2_bak.1.mse.bn3_smallscale4.running_mean', 'module.base_model.layer3_bak.5.mse.bn3.num_batches_tracked', 'module.base_model.layer3_bak.2.mse.bn1.bias', 'base_model.layer2_bak.2.mse.bn3_smallscale2.weight', 'module.base_model.resnext_layer1.2.bn2.running_var', 'base_model.conv1.bias', 'base_model.layer1_bak.0.bn3.weight', 'module.base_model.layer2_bak.1.mse.bn1.bias', 'base_model.layer3_bak.0.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.layer3_bak.0.mse.bn3_smallscale2.bias', 'base_model.layer3_bak.2.mse.bn3.weight', 'base_model.layer2_bak.1.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.layer3_bak.4.bn2.bias', 'base_model.layer4_bak.2.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer4_bak.2.mse.bn3.running_mean', 'module.base_model.layer4_bak.2.mse.bn1.bias', 'module.base_model.layer1_bak.2.bn1.running_var', 'base_model.layer1_bak.2.conv1.bias', 'base_model.resnext_layer1.0.bn3.running_mean', 'base_model.layer3_bak.0.conv3.weight', 'base_model.layer4_bak.1.conv3.weight', 'module.base_model.layer3_bak.5.conv2.weight', 'base_model.layer4_bak.1.bn2.bias', 'base_model.layer1_bak.1.bn3.bias', 'base_model.layer3_bak.0.bn3.num_batches_tracked', 'module.base_model.layer2_bak.3.bn1.running_var', 'module.base_model.layer2_bak.1.conv3.weight', 'module.base_model.layer4_bak.2.mse.bn3_smallscale2.bias', 'base_model.layer4_bak.1.mse.conv3_smallscale4.weight', 'module.base_model.layer2_bak.1.bn3.running_mean', 'base_model.layer2_bak.1.conv1.bias', 'base_model.resnext_layer1.2.conv2.bias', 'base_model.layer4_bak.1.mse.bn3.running_mean', 'base_model.layer4_bak.2.bn3.num_batches_tracked', 'module.base_model.layer2_bak.1.bn1.weight', 'base_model.layer2_bak.0.downsample.1.weight', 'module.base_model.resnext_layer1.2.bn1.running_var', 'module.base_model.layer3_bak.2.bn1.num_batches_tracked', 'module.base_model.layer4_bak.0.bn3.num_batches_tracked', 'base_model.layer3_bak.4.conv2.weight', 'base_model.layer3_bak.0.mse.bn3.weight', 'module.base_model.layer1_bak.0.bn3.running_var', 'base_model.layer4_bak.1.mse.bn3_smallscale4.weight', 'base_model.layer3_bak.1.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer2_bak.2.mse.bn3.running_mean', 'base_model.resnext_layer1.0.conv1.weight', 'base_model.layer3_bak.5.conv1.bias', 'base_model.layer2_bak.1.conv2.weight', 'module.base_model.layer1_bak.0.downsample.1.running_var', 'base_model.layer2_bak.1.bn3.weight', 'base_model.layer2_bak.3.bn1.weight', 'module.base_model.layer2_bak.1.bn1.bias', 'module.base_model.layer3_bak.3.mse.bn1.running_mean', 'base_model.layer1_bak.2.bn3.running_var', 'module.base_model.layer2_bak.2.bn1.running_mean', 'base_model.resnext_layer1.1.conv1.bias', 'base_model.layer3_bak.3.bn1.num_batches_tracked', 'module.base_model.resnext_layer1.1.conv3.bias', 'module.base_model.resnext_layer1.0.downsample.1.running_var', 'base_model.layer3_bak.3.bn2.bias', 'module.base_model.layer2_bak.1.bn2.num_batches_tracked', 'module.base_model.layer1_bak.2.bn3.num_batches_tracked', 'base_model.layer3_bak.0.mse.bn3_smallscale4.bias', 'module.base_model.layer1_bak.0.conv2.bias', 'base_model.layer3_bak.1.bn1.running_var', 'base_model.resnext_layer1.1.bn2.num_batches_tracked', 'base_model.resnext_layer1.1.bn3.weight', 'base_model.layer2_bak.3.bn2.weight', 'module.base_model.layer2_bak.2.mse.bn1.running_var', 'module.base_model.layer4_bak.2.bn3.weight', 'base_model.layer2_bak.2.bn2.weight', 'base_model.layer1_bak.0.conv1.bias', 'module.base_model.layer3_bak.0.bn2.weight', 'base_model.layer3_bak.0.downsample.0.bias', 'base_model.layer2_bak.1.mse.conv1.weight', 'base_model.layer3_bak.3.mse.conv3_smallscale2.weight', 'module.base_model.layer4_bak.0.mse.bn1.num_batches_tracked', 'base_model.layer3_bak.3.bn2.weight', 'base_model.layer2_bak.2.mse.bn1.running_var', 'base_model.layer2_bak.2.bn3.weight', 'module.base_model.layer2_bak.2.bn1.weight', 'module.base_model.layer4_bak.1.mse.bn3.running_mean', 'base_model.resnext_layer1.1.bn3.num_batches_tracked', 'base_model.layer2_bak.2.bn1.bias', 'module.base_model.layer3_bak.3.bn1.weight', 'module.base_model.layer2_bak.3.mse.bn3_smallscale2.weight', 'base_model.resnext_layer1.1.bn3.bias', 'base_model.layer3_bak.2.mse.conv1.weight', 'base_model.resnext_layer1.0.bn3.running_var', 'module.base_model.layer3_bak.1.conv3.bias', 'base_model.layer3_bak.1.mse.bn3.weight', 'module.base_model.layer4_bak.1.conv1.weight', 'module.base_model.layer3_bak.2.conv2.weight', 'base_model.layer4_bak.0.mse.conv1.weight', 'base_model.layer4_bak.1.mse.conv3_smallscale2.weight', 'module.base_model.layer3_bak.1.shift.conv.weight', 'module.base_model.resnext_layer1.0.conv3.bias', 'module.base_model.layer2_bak.0.bn1.running_var', 'base_model.layer3_bak.3.mse.bn3_smallscale4.weight', 'base_model.layer2_bak.1.mse.bn3.num_batches_tracked', 'module.base_model.layer3_bak.1.mse.conv2.weight', 'base_model.resnext_layer1.1.conv3.bias', 'module.base_model.layer4_bak.2.bn1.bias', 'base_model.layer1_bak.1.bn1.weight', 'module.base_model.layer2_bak.1.mse.bn3.num_batches_tracked', 'module.base_model.layer3_bak.5.mse.conv3_smallscale2.weight', 'module.base_model.layer2_bak.2.shift.conv.weight', 'base_model.resnext_layer1.0.downsample.1.running_mean', 'module.base_model.layer1_bak.1.bn1.running_var', 'module.base_model.layer3_bak.4.mse.bn1.running_var', 'base_model.layer4_bak.1.conv1.weight', 'base_model.layer4_bak.0.mse.bn3_smallscale2.bias', 'module.base_model.layer4_bak.0.conv1.weight', 'module.base_model.layer3_bak.3.mse.conv3.weight', 'base_model.layer4_bak.2.mse.bn1.running_var', 'base_model.layer4_bak.0.bn3.weight', 'base_model.layer3_bak.1.mse.bn1.bias', 'base_model.layer2_bak.0.mse.bn3_smallscale2.running_mean', 'module.base_model.layer3_bak.4.mse.conv3_smallscale4.weight', 'base_model.layer3_bak.3.mse.bn1.num_batches_tracked', 'module.base_model.layer4_bak.2.conv1.weight', 'module.base_model.layer3_bak.0.bn1.num_batches_tracked', 'module.base_model.layer3_bak.5.mse.bn3.running_mean', 'module.base_model.layer1_bak.1.bn1.running_mean', 'module.base_model.resnext_layer1.0.bn3.bias', 'base_model.resnext_layer1.0.conv3.bias', 'base_model.layer1_bak.1.conv2.bias', 'base_model.layer1_bak.0.conv1.weight', 'module.base_model.layer3_bak.5.conv3.bias', 'module.base_model.resnext_layer1.0.bn2.bias', 'module.base_model.layer1_bak.2.bn2.bias', 'module.base_model.layer2_bak.2.mse.bn3_smallscale2.running_mean', 'module.base_model.layer3_bak.5.conv2.bias', 'base_model.layer4_bak.0.conv2.weight', 'module.base_model.layer2_bak.2.bn2.running_mean', 'base_model.layer2_bak.0.conv3.weight', 'base_model.layer4_bak.0.bn1.running_var', 'module.base_model.layer3_bak.3.mse.conv1.weight', 'base_model.conv1_5.1.bias', 'base_model.conv1_5.1.running_mean', 'module.base_model.layer1_bak.0.bn2.num_batches_tracked', 'module.base_model.layer2_bak.1.mse.bn3_smallscale2.running_var', 'module.base_model.layer2_bak.2.bn3.num_batches_tracked', 'base_model.conv1_5.1.num_batches_tracked', 'module.base_model.layer3_bak.0.shift.conv.weight', 'base_model.layer1_bak.0.downsample.1.weight', 'base_model.layer3_bak.0.downsample.0.weight', 'base_model.layer3_bak.2.bn2.running_var', 'base_model.layer3_bak.2.bn1.num_batches_tracked', 'base_model.layer3_bak.1.mse.bn1.num_batches_tracked', 'module.base_model.layer3_bak.2.conv3.bias', 'base_model.layer2_bak.0.mse.bn1.num_batches_tracked', 'base_model.layer3_bak.3.conv3.weight', 'module.base_model.layer2_bak.2.bn2.weight', 'module.base_model.layer3_bak.3.bn2.running_var', 'base_model.layer3_bak.0.conv1.weight', 'base_model.layer3_bak.0.mse.bn3_smallscale4.running_var', 'module.base_model.layer4_bak.2.conv2.weight', 'base_model.layer2_bak.1.mse.bn1.running_var', 'base_model.layer3_bak.0.mse.conv3_smallscale4.weight', 'base_model.layer4_bak.2.bn2.running_var', 'module.base_model.layer4_bak.0.bn2.running_mean', 'base_model.layer1_bak.2.bn1.running_mean', 'module.base_model.layer3_bak.2.bn1.bias', 'module.base_model.layer4_bak.1.mse.bn3.running_var', 'module.base_model.layer3_bak.2.mse.bn1.weight', 'module.base_model.layer3_bak.3.conv1.bias', 'module.base_model.resnext_layer1.1.bn2.running_mean', 'module.base_model.layer3_bak.0.downsample.0.weight', 'module.base_model.resnext_layer1.2.bn1.running_mean', 'base_model.resnext_layer1.0.bn3.num_batches_tracked', 'module.base_model.layer4_bak.2.mse.conv3.weight', 'base_model.layer1_bak.2.conv3.bias', 'module.base_model.layer2_bak.3.mse.bn3_smallscale4.running_mean', 'base_model.layer2_bak.2.mse.bn3_smallscale4.running_mean', 'base_model.layer4_bak.1.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer3_bak.5.shift.conv.weight', 'module.base_model.layer4_bak.1.mse.bn1.weight', 'base_model.layer3_bak.4.mse.bn3.weight', 'base_model.layer4_bak.2.conv1.bias', 'base_model.layer2_bak.3.bn3.running_var', 'module.base_model.layer2_bak.0.mse.bn1.running_var', 'module.base_model.layer4_bak.2.bn1.weight', 'base_model.layer3_bak.2.bn2.bias', 'module.base_model.layer2_bak.3.bn1.num_batches_tracked', 'module.base_model.layer2_bak.2.bn1.running_var', 'module.base_model.layer2_bak.1.mse.conv3_smallscale2.weight', 'module.base_model.layer2_bak.3.mse.bn1.num_batches_tracked', 'base_model.layer1_bak.0.conv3.bias', 'module.base_model.layer3_bak.0.conv2.weight', 'base_model.layer1_bak.1.bn3.running_var', 'module.base_model.layer3_bak.3.bn3.weight', 'module.base_model.layer3_bak.0.conv3.bias', 'base_model.layer3_bak.0.mse.bn1.num_batches_tracked', 'module.base_model.layer3_bak.1.mse.bn3.weight', 'module.base_model.layer3_bak.1.bn1.num_batches_tracked', 'module.base_model.layer1_bak.2.conv2.bias', 'base_model.layer3_bak.0.mse.bn3_smallscale4.running_mean', 'module.base_model.resnext_layer1.2.bn3.num_batches_tracked', 'module.base_model.layer4_bak.2.mse.conv2.weight', 'module.base_model.layer1_bak.1.conv2.bias', 'base_model.layer4_bak.1.bn3.weight', 'module.base_model.layer3_bak.0.bn2.bias', 'base_model.layer2_bak.3.mse.bn1.running_mean', 'module.base_model.layer3_bak.5.mse.bn3_smallscale2.running_var', 'module.base_model.layer3_bak.0.downsample.1.running_var', 'base_model.layer2_bak.0.mse.bn3_smallscale2.weight', 'module.base_model.layer1_bak.0.bn2.weight', 'base_model.layer3_bak.0.bn1.running_var', 'base_model.layer2_bak.1.conv1.weight', 'module.base_model.resnext_layer1.1.bn2.running_var', 'module.base_model.layer4_bak.1.conv1.bias', 'base_model.layer4_bak.1.mse.bn3.weight', 'module.base_model.resnext_layer1.0.conv2.bias', 'base_model.layer3_bak.5.bn3.bias', 'base_model.layer3_bak.0.mse.bn1.running_mean', 'module.base_model.layer3_bak.1.mse.conv3.weight', 'module.base_model.layer3_bak.5.bn2.num_batches_tracked', 'module.base_model.layer2_bak.1.bn2.weight', 'base_model.layer2_bak.2.mse.bn1.running_mean', 'module.base_model.layer3_bak.4.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.layer3_bak.4.bn3.running_var', 'base_model.layer4_bak.1.mse.conv2.weight', 'base_model.resnext_layer1.2.bn3.weight', 'base_model.layer4_bak.2.shift.conv.weight', 'module.base_model.layer1_bak.1.conv2.weight', 'module.base_model.layer4_bak.1.mse.conv3.weight', 'base_model.layer3_bak.4.bn2.running_var', 'module.base_model.layer3_bak.4.bn1.num_batches_tracked', 'base_model.resnext_layer1.0.downsample.0.weight', 'base_model.layer3_bak.2.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.resnext_layer1.2.bn3.running_var', 'base_model.layer3_bak.4.mse.bn3_smallscale2.weight', 'base_model.layer2_bak.1.mse.bn1.bias', 'base_model.layer2_bak.0.mse.bn3_smallscale4.running_mean', 'module.base_model.layer3_bak.5.bn1.weight', 'base_model.layer3_bak.3.mse.bn1.bias', 'base_model.layer4_bak.1.mse.bn3_smallscale4.running_mean', 'module.base_model.layer2_bak.0.bn1.running_mean', 'base_model.layer3_bak.5.bn2.weight', 'base_model.layer3_bak.0.downsample.1.running_mean', 'module.base_model.layer3_bak.3.mse.conv3_smallscale2.weight', 'module.base_model.resnext_layer1.1.bn3.weight', 'base_model.layer2_bak.2.mse.bn3.weight', 'base_model.layer4_bak.0.mse.bn1.weight', 'module.base_model.layer3_bak.3.conv2.bias', 'base_model.resnext_layer1.2.bn2.num_batches_tracked', 'base_model.resnext_layer1.2.bn1.running_mean', 'module.base_model.resnext_layer1.1.bn1.running_mean', 'base_model.layer3_bak.5.mse.bn3_smallscale2.running_mean', 'module.base_model.layer2_bak.0.mse.bn3_smallscale2.running_var', 'module.base_model.layer3_bak.1.conv2.weight', 'base_model.layer3_bak.0.mse.conv3.weight', 'module.base_model.layer4_bak.1.conv3.weight', 'module.base_model.layer4_bak.0.mse.bn3_smallscale4.running_mean', 'module.base_model.layer4_bak.1.bn3.num_batches_tracked', 'base_model.resnext_layer1.0.bn2.num_batches_tracked', 'base_model.layer3_bak.1.bn1.bias', 'base_model.layer2_bak.0.mse.bn1.running_mean', 'module.base_model.layer3_bak.0.bn2.num_batches_tracked', 'base_model.layer4_bak.2.conv2.bias', 'base_model.layer2_bak.2.bn1.weight', 'module.base_model.layer3_bak.3.mse.bn3.num_batches_tracked', 'module.base_model.layer3_bak.5.conv3.weight', 'module.base_model.layer3_bak.4.shift.conv.weight', 'base_model.layer4_bak.1.mse.bn3_smallscale2.running_var', 'module.base_model.layer3_bak.3.mse.bn1.weight', 'base_model.layer3_bak.4.mse.conv2.weight', 'base_model.layer3_bak.4.bn2.running_mean', 'module.base_model.layer4_bak.1.mse.bn1.bias', 'module.base_model.layer3_bak.4.mse.conv2.weight', 'base_model.layer3_bak.1.conv2.weight', 'base_model.layer4_bak.2.mse.conv3.weight', 'module.base_model.layer3_bak.1.mse.bn1.weight', 'module.base_model.layer4_bak.1.mse.conv3_smallscale4.weight', 'base_model.layer1_bak.0.bn3.running_mean', 'base_model.layer3_bak.3.conv2.weight', 'module.base_model.layer1_bak.1.conv1.weight', 'module.base_model.layer2_bak.0.mse.bn3_smallscale4.bias', 'base_model.layer4_bak.2.conv2.weight', 'base_model.layer4_bak.1.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer2_bak.3.mse.bn3.bias', 'base_model.layer3_bak.5.mse.bn3_smallscale4.weight', 'module.base_model.layer2_bak.0.bn3.weight', 'module.base_model.layer2_bak.1.mse.bn3.running_var', 'base_model.layer4_bak.0.mse.bn1.bias', 'module.base_model.layer3_bak.0.bn3.bias', 'base_model.layer2_bak.0.bn3.running_mean', 'base_model.layer2_bak.3.bn3.running_mean', 'module.base_model.layer4_bak.0.downsample.0.weight', 'base_model.layer3_bak.3.conv1.bias', 'module.base_model.layer4_bak.2.conv3.weight', 'module.base_model.layer4_bak.2.bn3.running_mean', 'base_model.layer3_bak.1.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.layer4_bak.1.mse.conv1.weight', 'module.base_model.layer4_bak.2.mse.bn3.num_batches_tracked', 'module.base_model.layer3_bak.3.mse.bn3_smallscale4.weight', 'base_model.layer4_bak.2.mse.conv2.weight', 'base_model.layer3_bak.5.mse.conv3_smallscale2.weight', 'module.base_model.layer2_bak.3.mse.bn3.weight', 'base_model.layer2_bak.3.conv2.bias', 'base_model.layer3_bak.2.mse.bn1.running_var', 'module.base_model.layer2_bak.3.mse.bn3_smallscale4.weight', 'module.base_model.layer2_bak.3.bn3.weight', 'module.base_model.layer3_bak.4.mse.conv3_smallscale2.weight', 'module.base_model.layer4_bak.1.mse.bn3_smallscale2.running_mean', 'module.base_model.layer2_bak.3.conv3.weight', 'module.base_model.layer2_bak.1.mse.conv2.weight', 'base_model.layer2_bak.0.conv2.bias', 'module.base_model.layer4_bak.2.bn3.bias', 'module.base_model.layer3_bak.0.mse.bn3_smallscale2.weight', 'base_model.layer3_bak.0.mse.bn3.running_var', 'base_model.layer3_bak.4.shift.conv.weight', 'base_model.layer3_bak.3.mse.bn1.weight', 'module.base_model.layer1_bak.2.bn3.bias', 'base_model.resnext_layer1.2.bn2.bias', 'base_model.layer3_bak.0.mse.bn3_smallscale2.running_mean', 'module.base_model.layer3_bak.2.conv3.weight', 'module.base_model.layer3_bak.1.mse.bn1.running_mean', 'module.base_model.layer1_bak.0.conv3.weight', 'base_model.layer3_bak.5.bn2.num_batches_tracked', 'module.base_model.layer1_bak.0.bn2.bias', 'base_model.layer3_bak.1.mse.bn3.running_mean', 'base_model.layer4_bak.1.bn1.running_var', 'module.base_model.layer3_bak.3.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer2_bak.3.conv3.weight', 'module.base_model.layer3_bak.3.mse.bn3_smallscale4.bias', 'base_model.resnext_layer1.1.bn2.running_var', 'base_model.layer2_bak.3.bn2.running_mean', 'module.base_model.layer4_bak.2.mse.bn3.running_var', 'module.base_model.layer2_bak.2.conv3.weight', 'module.base_model.layer2_bak.0.mse.conv2.weight', 'module.base_model.layer2_bak.1.mse.bn1.num_batches_tracked', 'module.base_model.layer4_bak.2.bn2.running_mean', 'base_model.layer2_bak.3.mse.conv3_smallscale2.weight', 'base_model.layer3_bak.0.bn1.running_mean', 'module.base_model.layer1_bak.0.downsample.1.weight', 'module.base_model.conv1.bias', 'module.base_model.layer2_bak.1.mse.bn1.weight', 'base_model.layer3_bak.1.bn3.weight', 'base_model.resnext_layer1.1.conv1.weight', 'base_model.layer1_bak.2.conv2.weight', 'module.base_model.layer3_bak.2.mse.bn3.num_batches_tracked', 'module.base_model.layer1_bak.0.bn3.num_batches_tracked', 'base_model.layer4_bak.0.downsample.1.running_var', 'base_model.layer4_bak.2.mse.bn3.num_batches_tracked', 'base_model.layer2_bak.3.mse.bn3_smallscale2.weight', 'base_model.layer3_bak.5.mse.conv2.weight', 'module.base_model.layer3_bak.2.bn2.weight', 'module.base_model.layer3_bak.3.bn1.num_batches_tracked', 'module.base_model.layer3_bak.1.bn3.running_var', 'module.base_model.layer4_bak.1.bn2.weight', 'module.base_model.layer2_bak.1.bn3.num_batches_tracked', 'module.base_model.layer3_bak.2.shift.conv.weight', 'module.base_model.conv1_5.1.num_batches_tracked', 'module.base_model.layer4_bak.0.mse.bn3_smallscale4.running_var', 'base_model.layer3_bak.1.mse.bn3_smallscale2.bias', 'base_model.layer4_bak.1.mse.bn3_smallscale2.weight', 'base_model.layer2_bak.3.mse.bn3_smallscale4.running_var', 'base_model.layer3_bak.3.mse.bn3.num_batches_tracked', 'base_model.layer3_bak.2.conv3.bias', 'module.base_model.layer3_bak.0.mse.conv1.weight', 'base_model.layer3_bak.5.mse.bn3_smallscale2.weight', 'module.base_model.layer2_bak.2.bn2.num_batches_tracked', 'module.base_model.layer3_bak.1.mse.bn3_smallscale4.weight', 'module.base_model.layer4_bak.1.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer2_bak.0.downsample.1.num_batches_tracked', 'module.base_model.layer4_bak.1.bn1.running_mean', 'module.base_model.layer3_bak.0.downsample.1.running_mean', 'module.base_model.layer2_bak.3.mse.bn3.running_var', 'module.base_model.layer4_bak.0.mse.bn3.bias', 'base_model.layer4_bak.0.conv1.bias', 'base_model.layer4_bak.2.mse.bn3_smallscale2.running_var', 'base_model.layer3_bak.4.mse.conv3.weight', 'base_model.layer2_bak.1.mse.bn3_smallscale2.running_var', 'module.base_model.layer3_bak.2.bn3.running_var', 'base_model.layer3_bak.4.bn3.num_batches_tracked', 'base_model.layer1_bak.2.bn3.num_batches_tracked', 'module.base_model.layer3_bak.0.mse.conv3_smallscale2.weight', 'module.base_model.layer1_bak.1.bn1.bias', 'module.base_model.layer2_bak.2.mse.bn3_smallscale4.running_var', 'module.base_model.layer3_bak.5.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.resnext_layer1.0.bn1.weight', 'base_model.resnext_layer1.0.bn1.bias', 'base_model.layer2_bak.1.bn1.running_mean', 'base_model.layer4_bak.2.mse.bn3.running_var', 'module.base_model.layer2_bak.1.mse.bn3_smallscale2.running_mean', 'module.base_model.layer3_bak.2.conv2.bias', 'base_model.layer3_bak.5.bn3.running_var', 'base_model.layer4_bak.1.mse.conv3.weight', 'base_model.layer1_bak.2.bn1.bias', 'module.base_model.layer4_bak.1.mse.conv3_smallscale2.weight', 'base_model.layer2_bak.3.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer3_bak.3.mse.conv1.weight', 'base_model.layer4_bak.0.bn2.bias', 'module.base_model.layer3_bak.0.conv3.weight', 'base_model.layer3_bak.5.mse.bn3_smallscale2.bias', 'module.base_model.layer2_bak.1.conv1.bias', 'module.base_model.layer3_bak.1.mse.bn3_smallscale2.running_var', 'base_model.layer3_bak.5.conv3.bias', 'module.base_model.layer2_bak.1.mse.bn3.running_mean', 'module.base_model.layer4_bak.1.bn1.weight', 'base_model.layer2_bak.1.bn1.bias', 'base_model.layer1_bak.2.bn2.num_batches_tracked', 'module.base_model.layer2_bak.2.conv1.weight', 'module.base_model.layer3_bak.5.mse.bn1.running_var', 'base_model.layer4_bak.0.bn2.running_mean', 'base_model.layer3_bak.2.mse.bn3_smallscale4.weight', 'module.base_model.layer4_bak.2.mse.bn3_smallscale4.running_var', 'base_model.layer3_bak.0.mse.bn3.num_batches_tracked', 'module.base_model.layer3_bak.4.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.layer3_bak.1.bn1.weight', 'base_model.layer2_bak.1.shift.conv.weight', 'module.base_model.resnext_layer1.2.conv1.weight', 'module.base_model.layer1_bak.2.conv1.weight', 'base_model.layer2_bak.2.mse.bn3.running_var', 'module.base_model.layer1_bak.2.bn3.running_mean', 'base_model.layer2_bak.0.downsample.0.weight', 'base_model.layer3_bak.5.mse.bn3.running_var', 'base_model.layer3_bak.1.bn1.weight', 'module.base_model.layer3_bak.5.bn1.running_mean', 'base_model.layer2_bak.2.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.layer4_bak.0.bn2.num_batches_tracked', 'module.base_model.layer4_bak.2.mse.bn3_smallscale2.running_var', 'base_model.layer2_bak.0.conv1.bias', 'module.base_model.layer2_bak.2.mse.bn3_smallscale2.bias', 'module.base_model.layer3_bak.1.bn1.running_mean', 'module.base_model.layer3_bak.5.conv1.weight', 'base_model.layer2_bak.1.mse.bn1.running_mean', 'module.base_model.layer3_bak.0.bn3.running_var', 'module.base_model.layer3_bak.1.conv1.bias', 'base_model.layer4_bak.2.conv3.weight', 'base_model.layer3_bak.1.conv2.bias', 'base_model.layer4_bak.0.mse.bn3.running_mean', 'base_model.layer3_bak.2.mse.bn3.running_mean', 'module.base_model.layer4_bak.2.mse.bn3.weight', 'base_model.layer2_bak.1.bn1.weight', 'base_model.layer1_bak.0.downsample.0.weight', 'base_model.layer2_bak.2.bn3.running_mean', 'base_model.layer2_bak.2.mse.bn1.bias', 'module.base_model.layer2_bak.1.bn3.bias', 'module.base_model.layer4_bak.1.bn3.running_var', 'base_model.layer2_bak.2.conv2.bias', 'module.base_model.conv1_5.1.running_var', 'module.base_model.resnext_layer1.0.conv2.weight', 'module.base_model.layer4_bak.0.downsample.1.running_mean', 'module.base_model.layer4_bak.2.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer4_bak.2.mse.bn3.weight', 'base_model.resnext_layer1.1.bn1.running_var', 'module.base_model.resnext_layer1.0.downsample.1.num_batches_tracked', 'base_model.layer1_bak.0.bn2.num_batches_tracked', 'base_model.layer1_bak.1.bn2.bias', 'module.base_model.layer1_bak.0.conv1.weight', 'base_model.layer3_bak.3.bn2.running_mean', 'base_model.layer1_bak.0.downsample.1.running_mean', 'module.base_model.layer2_bak.0.downsample.0.bias', 'base_model.layer3_bak.2.conv2.weight', 'base_model.layer2_bak.3.mse.bn3_smallscale2.running_var', 'base_model.layer3_bak.5.mse.bn3_smallscale4.bias', 'module.base_model.layer2_bak.1.conv3.bias', 'module.base_model.layer3_bak.4.bn3.bias', 'module.base_model.layer2_bak.0.mse.bn1.weight', 'module.base_model.layer4_bak.0.bn1.bias', 'module.base_model.layer3_bak.3.bn3.running_var', 'module.base_model.layer3_bak.1.mse.conv3_smallscale2.weight', 'base_model.layer4_bak.2.mse.bn3_smallscale2.running_mean', 'base_model.layer1_bak.1.bn2.weight', 'base_model.layer1_bak.0.bn2.weight', 'base_model.layer3_bak.4.mse.conv3_smallscale4.weight', 'module.base_model.layer3_bak.3.mse.conv2.weight', 'module.base_model.layer3_bak.4.bn1.bias', 'module.base_model.layer2_bak.0.downsample.1.bias', 'module.base_model.layer3_bak.4.mse.bn3_smallscale4.weight', 'module.base_model.layer4_bak.1.mse.bn3_smallscale4.running_var', 'base_model.layer3_bak.1.conv1.weight', 'module.base_model.layer3_bak.1.mse.bn3_smallscale2.running_mean', 'base_model.resnext_layer1.0.bn3.bias', 'module.base_model.layer3_bak.1.conv2.bias', 'base_model.layer2_bak.3.bn3.weight', 'base_model.layer3_bak.1.mse.conv2.weight', 'module.base_model.layer3_bak.3.conv3.weight', 'base_model.layer3_bak.0.mse.bn1.running_var', 'base_model.layer4_bak.0.conv1.weight', 'module.base_model.layer4_bak.2.bn1.running_var', 'base_model.layer1_bak.0.bn2.running_var', 'module.base_model.layer2_bak.3.mse.bn1.weight', 'module.base_model.layer4_bak.0.shift.conv.weight', 'module.base_model.layer2_bak.2.bn3.weight', 'base_model.layer3_bak.5.bn3.running_mean', 'base_model.layer2_bak.3.mse.bn1.num_batches_tracked', 'module.base_model.layer4_bak.0.mse.bn3.running_mean', 'base_model.layer3_bak.1.mse.bn1.weight', 'base_model.layer3_bak.2.bn3.weight', 'base_model.layer1_bak.2.bn2.running_var', 'base_model.conv1_temp.weight', 'module.base_model.layer3_bak.4.mse.conv3.weight', 'module.base_model.layer2_bak.3.bn1.bias', 'module.base_model.layer1_bak.0.bn1.running_mean', 'module.base_model.layer4_bak.0.downsample.0.bias', 'base_model.layer4_bak.0.bn1.weight', 'module.base_model.layer2_bak.1.mse.bn3_smallscale4.bias', 'base_model.layer1_bak.1.bn2.running_mean', 'module.base_model.layer3_bak.2.bn3.num_batches_tracked', 'base_model.layer3_bak.4.bn3.bias', 'module.base_model.conv1_temp.weight', 'module.base_model.layer4_bak.0.mse.bn3.running_var', 'module.base_model.layer2_bak.3.mse.conv1.weight', 'base_model.layer2_bak.1.bn2.running_mean', 'base_model.layer2_bak.0.mse.conv3_smallscale2.weight', 'base_model.layer3_bak.4.bn3.running_mean', 'module.base_model.layer2_bak.1.mse.conv1.weight', 'module.base_model.layer3_bak.3.bn3.running_mean', 'base_model.layer1_bak.2.bn1.running_var', 'module.base_model.layer3_bak.1.mse.bn1.num_batches_tracked', 'base_model.layer4_bak.0.bn3.bias', 'module.base_model.layer2_bak.2.bn2.running_var', 'module.base_model.resnext_layer1.0.bn2.weight', 'base_model.layer2_bak.0.conv3.bias', 'base_model.layer4_bak.2.mse.bn3_smallscale4.bias', 'base_model.layer3_bak.5.mse.bn3.bias', 'base_model.layer1_bak.2.conv2.bias', 'base_model.layer4_bak.2.mse.bn3.bias', 'module.base_model.layer3_bak.5.bn3.running_var', 'base_model.layer3_bak.3.bn1.running_mean', 'base_model.layer3_bak.1.mse.bn1.running_var', 'base_model.layer4_bak.0.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer4_bak.1.conv3.bias', 'base_model.resnext_layer1.2.conv3.bias', 'module.base_model.layer2_bak.0.mse.conv3_smallscale2.weight', 'base_model.layer1_bak.0.bn1.num_batches_tracked', 'module.base_model.layer1_bak.0.conv1.bias', 'module.base_model.layer2_bak.3.conv2.bias', 'base_model.layer2_bak.0.mse.bn1.running_var', 'base_model.layer2_bak.1.bn2.weight', 'module.base_model.layer3_bak.3.bn1.bias', 'base_model.layer2_bak.0.bn3.num_batches_tracked', 'base_model.layer3_bak.3.bn3.weight', 'base_model.layer2_bak.1.mse.bn1.weight', 'module.base_model.layer2_bak.1.bn1.num_batches_tracked', 'base_model.resnext_layer1.0.bn2.weight', 'base_model.layer4_bak.0.bn1.num_batches_tracked', 'base_model.layer4_bak.2.conv3.bias', 'module.base_model.layer3_bak.3.mse.bn1.bias', 'module.base_model.layer3_bak.2.conv1.weight', 'base_model.resnext_layer1.1.conv3.weight', 'base_model.layer3_bak.1.bn3.num_batches_tracked', 'module.base_model.layer3_bak.5.bn3.num_batches_tracked', 'base_model.layer3_bak.4.mse.bn3.bias', 'module.base_model.layer3_bak.2.mse.bn1.running_var', 'base_model.layer1_bak.2.bn2.running_mean', 'base_model.layer3_bak.2.bn2.weight', 'base_model.layer3_bak.4.mse.bn3_smallscale2.running_mean', 'base_model.layer3_bak.5.mse.bn3.weight', 'base_model.layer3_bak.1.mse.bn3_smallscale2.running_var', 'module.base_model.layer3_bak.2.conv1.bias', 'base_model.layer3_bak.4.mse.bn3_smallscale4.running_mean', 'base_model.layer3_bak.3.bn1.bias', 'module.base_model.layer4_bak.2.mse.conv3_smallscale2.weight', 'base_model.layer2_bak.0.mse.bn3_smallscale4.weight', 'base_model.layer3_bak.2.bn3.num_batches_tracked', 'base_model.layer4_bak.0.bn3.running_var', 'module.base_model.layer2_bak.2.bn3.running_mean', 'module.base_model.layer4_bak.0.mse.bn3_smallscale4.weight', 'module.base_model.layer3_bak.5.mse.bn3_smallscale4.running_mean', 'base_model.layer3_bak.0.bn3.running_var', 'base_model.layer4_bak.2.mse.conv3_smallscale4.weight', 'module.base_model.layer2_bak.1.mse.bn3_smallscale2.weight', 'base_model.layer3_bak.0.mse.conv1.weight', 'module.base_model.layer2_bak.0.mse.conv3.weight', 'module.base_model.layer4_bak.0.mse.bn3_smallscale2.running_mean', 'module.base_model.layer3_bak.2.mse.conv3_smallscale2.weight', 'base_model.layer3_bak.3.mse.bn3_smallscale2.bias', 'module.base_model.layer3_bak.2.mse.bn1.running_mean', 'base_model.layer3_bak.2.mse.bn1.running_mean', 'module.base_model.layer3_bak.5.mse.bn3.bias', 'module.base_model.resnext_layer1.1.bn1.weight', 'module.base_model.conv1_temp.bias', 'base_model.layer3_bak.2.mse.conv3.weight', 'base_model.layer3_bak.4.bn2.num_batches_tracked', 'module.base_model.resnext_layer1.0.bn1.num_batches_tracked', 'base_model.layer3_bak.3.bn3.running_mean', 'module.base_model.layer4_bak.1.bn3.weight', 'base_model.resnext_layer1.2.bn2.running_var', 'base_model.layer2_bak.0.bn1.running_var', 'base_model.layer2_bak.1.mse.conv3_smallscale2.weight', 'module.base_model.layer4_bak.0.bn3.running_mean', 'base_model.layer3_bak.3.mse.conv3.weight', 'base_model.layer4_bak.0.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer2_bak.3.mse.bn3.running_var', 'base_model.resnext_layer1.2.bn2.running_mean', 'module.base_model.bn1.running_mean', 'module.base_model.layer3_bak.0.bn1.running_mean', 'base_model.layer4_bak.1.bn2.running_mean', 'base_model.layer2_bak.2.mse.bn3.num_batches_tracked', 'base_model.layer1_bak.0.downsample.0.bias', 'base_model.layer2_bak.0.mse.conv1.weight', 'base_model.layer2_bak.1.bn1.num_batches_tracked', 'module.base_model.layer2_bak.1.bn3.weight', 'base_model.layer2_bak.1.mse.bn3.weight', 'base_model.layer4_bak.2.bn2.running_mean', 'base_model.layer1_bak.0.bn1.running_var', 'base_model.layer3_bak.1.conv1.bias', 'base_model.layer1_bak.0.bn3.bias', 'module.base_model.layer2_bak.3.conv2.weight', 'module.base_model.layer1_bak.1.bn1.weight', 'base_model.layer3_bak.3.bn3.running_var', 'base_model.resnext_layer1.0.bn2.bias', 'base_model.layer4_bak.0.mse.bn3_smallscale4.running_mean', 'base_model.layer3_bak.0.downsample.1.bias', 'base_model.layer1_bak.1.bn1.running_var', 'base_model.layer2_bak.2.bn1.num_batches_tracked', 'base_model.layer3_bak.3.bn2.running_var', 'module.base_model.layer2_bak.2.mse.bn1.running_mean', 'module.base_model.layer2_bak.0.mse.bn3_smallscale4.running_mean', 'module.base_model.layer2_bak.0.bn3.running_mean', 'module.base_model.layer3_bak.4.mse.bn3.bias', 'module.base_model.layer2_bak.0.bn2.running_mean', 'base_model.resnext_layer1.2.bn2.weight', 'base_model.layer1_bak.1.conv3.weight', 'module.base_model.layer2_bak.2.mse.bn3_smallscale4.weight', 'module.base_model.layer3_bak.2.mse.conv1.weight', 'module.base_model.layer3_bak.3.mse.bn3.running_mean', 'base_model.layer3_bak.0.bn2.weight', 'module.base_model.resnext_layer1.0.conv1.weight', 'module.base_model.layer3_bak.4.mse.bn3_smallscale2.bias', 'module.base_model.layer4_bak.1.mse.conv2.weight', 'base_model.layer2_bak.1.conv2.bias', 'module.base_model.layer4_bak.0.mse.bn3_smallscale2.num_batches_tracked', 'base_model.resnext_layer1.0.downsample.1.weight', 'base_model.layer3_bak.1.conv3.weight', 'module.base_model.layer2_bak.0.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.layer2_bak.0.downsample.1.num_batches_tracked', 'base_model.layer2_bak.3.conv3.bias', 'base_model.layer3_bak.0.mse.bn3_smallscale2.weight', 'base_model.layer3_bak.4.mse.bn3_smallscale4.weight', 'module.base_model.layer2_bak.0.mse.bn3.running_mean', 'module.base_model.layer2_bak.2.mse.conv1.weight', 'module.base_model.layer3_bak.4.conv2.bias', 'base_model.layer1_bak.0.bn3.num_batches_tracked', 'module.base_model.layer4_bak.0.bn1.running_mean', 'module.base_model.resnext_layer1.1.bn3.running_var', 'base_model.layer3_bak.0.mse.bn3_smallscale4.weight', 'module.base_model.layer2_bak.2.mse.bn3.running_mean', 'module.base_model.layer1_bak.1.bn2.weight', 'module.base_model.layer2_bak.3.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.layer4_bak.0.bn2.weight', 'module.base_model.layer3_bak.1.mse.bn3_smallscale2.bias', 'base_model.layer4_bak.0.mse.bn3.num_batches_tracked', 'base_model.layer3_bak.5.bn3.weight', 'base_model.layer3_bak.5.mse.conv3.weight', 'base_model.layer1_bak.2.bn3.bias', 'base_model.resnext_layer1.1.bn3.running_mean', 'base_model.layer3_bak.2.conv2.bias', 'module.base_model.layer1_bak.0.conv3.bias', 'base_model.layer2_bak.0.conv1.weight', 'module.base_model.layer3_bak.2.mse.bn3_smallscale4.bias', 'base_model.layer3_bak.2.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer4_bak.0.mse.bn3_smallscale2.weight', 'module.base_model.layer3_bak.3.bn1.running_var', 'base_model.bn1.running_var', 'module.base_model.layer2_bak.0.conv1.weight', 'base_model.layer3_bak.2.bn1.running_mean', 'base_model.layer4_bak.1.bn1.running_mean', 'module.base_model.layer3_bak.4.mse.conv1.weight', 'module.base_model.layer3_bak.3.bn2.num_batches_tracked', 'base_model.layer1_bak.0.downsample.1.num_batches_tracked', 'base_model.layer3_bak.4.conv3.weight', 'module.base_model.layer2_bak.2.conv2.bias', 'base_model.layer3_bak.2.mse.conv3_smallscale2.weight', 'module.base_model.layer3_bak.1.bn2.running_mean', 'base_model.resnext_layer1.0.bn1.weight', 'base_model.layer3_bak.4.mse.bn1.bias', 'module.base_model.resnext_layer1.2.bn1.weight', 'base_model.layer3_bak.4.bn3.running_var', 'base_model.resnext_layer1.2.bn3.running_mean', 'base_model.layer2_bak.0.mse.bn3.bias', 'module.base_model.layer3_bak.2.bn1.running_mean', 'base_model.layer2_bak.1.bn3.bias', 'base_model.layer3_bak.2.mse.bn3_smallscale2.running_var', 'module.base_model.layer4_bak.0.bn1.num_batches_tracked', 'module.base_model.layer3_bak.5.mse.bn1.bias', 'base_model.layer3_bak.1.mse.conv3.weight', 'base_model.layer2_bak.2.mse.conv3_smallscale4.weight', 'module.base_model.layer4_bak.2.bn1.num_batches_tracked', 'base_model.layer4_bak.0.downsample.1.num_batches_tracked', 'module.base_model.layer3_bak.2.mse.bn3.running_mean', 'base_model.layer2_bak.0.shift.conv.weight', 'module.base_model.layer2_bak.3.bn3.num_batches_tracked', 'module.base_model.layer2_bak.3.mse.bn3.bias', 'module.base_model.layer3_bak.4.bn2.weight', 'base_model.layer3_bak.5.bn2.running_mean', 'module.base_model.layer4_bak.2.conv1.bias', 'module.base_model.resnext_layer1.1.bn1.bias', 'module.base_model.layer3_bak.0.bn3.running_mean', 'base_model.layer4_bak.2.mse.bn1.bias', 'module.base_model.layer3_bak.4.bn1.weight', 'module.base_model.layer2_bak.3.mse.bn3_smallscale2.running_var', 'module.base_model.layer3_bak.0.bn2.running_mean', 'module.base_model.layer3_bak.5.mse.bn3_smallscale2.running_mean', 'module.base_model.layer2_bak.3.bn2.weight', 'module.base_model.layer4_bak.2.mse.bn1.running_var', 'base_model.layer3_bak.1.bn2.running_var', 'base_model.layer3_bak.1.bn1.running_mean', 'base_model.layer3_bak.5.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer4_bak.0.bn3.running_mean', 'base_model.layer4_bak.1.mse.bn3.num_batches_tracked', 'base_model.resnext_layer1.0.downsample.1.running_var', 'base_model.resnext_layer1.2.bn1.weight', 'module.base_model.layer1_bak.1.bn2.bias', 'base_model.layer3_bak.2.mse.conv3_smallscale4.weight', 'module.base_model.layer3_bak.0.mse.bn3_smallscale4.bias', 'base_model.layer2_bak.2.bn2.running_mean', 'base_model.layer3_bak.4.mse.bn1.running_var', 'module.base_model.layer3_bak.2.mse.bn3_smallscale4.weight', 'module.base_model.layer2_bak.0.mse.bn3.num_batches_tracked', 'base_model.layer3_bak.2.mse.bn1.num_batches_tracked', 'module.base_model.layer2_bak.3.bn2.bias', 'module.base_model.resnext_layer1.2.bn1.bias', 'base_model.layer3_bak.1.mse.bn3_smallscale4.running_mean', 'base_model.layer3_bak.1.mse.bn3.num_batches_tracked', 'module.base_model.resnext_layer1.2.bn1.num_batches_tracked', 'module.base_model.layer3_bak.0.conv1.weight', 'module.base_model.layer2_bak.0.mse.bn3_smallscale2.running_mean', 'base_model.resnext_layer1.1.bn2.running_mean', 'module.base_model.layer3_bak.3.conv3.bias', 'base_model.layer3_bak.0.bn2.bias', 'base_model.layer3_bak.2.bn1.running_var', 'module.base_model.layer4_bak.1.bn1.running_var', 'base_model.layer2_bak.0.mse.bn3.num_batches_tracked', 'base_model.layer2_bak.1.bn1.running_var', 'module.base_model.layer3_bak.5.bn3.running_mean', 'module.base_model.layer3_bak.0.bn2.running_var', 'base_model.layer2_bak.1.mse.bn3.bias', 'module.base_model.layer1_bak.2.conv3.weight', 'base_model.layer3_bak.4.mse.bn3.num_batches_tracked', 'module.base_model.layer4_bak.0.downsample.1.running_var', 'module.base_model.layer4_bak.0.downsample.1.weight', 'module.base_model.layer3_bak.0.mse.conv3.weight', 'module.base_model.layer3_bak.5.bn3.bias', 'base_model.layer3_bak.1.mse.bn1.running_mean', 'base_model.layer4_bak.2.conv1.weight', 'base_model.layer2_bak.3.bn1.running_var', 'base_model.layer2_bak.3.mse.bn1.bias', 'module.base_model.layer2_bak.0.conv2.bias', 'module.base_model.layer2_bak.0.mse.bn3_smallscale4.running_var', 'module.base_model.layer4_bak.1.mse.bn3.weight', 'base_model.layer4_bak.2.mse.conv3_smallscale2.weight', 'module.base_model.layer4_bak.2.mse.bn3_smallscale2.running_mean', 'module.base_model.layer2_bak.3.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.layer2_bak.3.mse.bn1.running_var', 'module.base_model.layer3_bak.5.mse.bn1.num_batches_tracked', 'base_model.resnext_layer1.2.bn3.bias', 'module.base_model.layer2_bak.2.bn1.bias', 'base_model.layer4_bak.0.mse.conv2.weight', 'module.base_model.resnext_layer1.0.bn1.running_var', 'module.base_model.layer1_bak.0.bn1.bias', 'module.base_model.layer4_bak.0.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer3_bak.5.bn1.bias', 'module.base_model.layer4_bak.2.mse.bn1.num_batches_tracked', 'module.base_model.layer2_bak.1.bn2.bias', 'module.base_model.layer4_bak.2.conv2.bias', 'module.base_model.layer3_bak.3.bn2.weight', 'base_model.layer3_bak.2.mse.bn3_smallscale2.bias', 'base_model.layer4_bak.2.bn1.running_var', 'module.base_model.layer2_bak.0.downsample.1.running_mean', 'module.base_model.resnext_layer1.2.bn3.bias', 'base_model.layer3_bak.3.bn3.bias', 'base_model.layer4_bak.0.conv3.bias', 'module.base_model.layer1_bak.0.downsample.0.bias', 'module.base_model.resnext_layer1.2.conv3.bias', 'module.base_model.layer2_bak.0.bn2.num_batches_tracked', 'module.base_model.conv1_5.1.bias', 'module.base_model.resnext_layer1.0.downsample.1.bias', 'module.base_model.layer3_bak.0.mse.bn3_smallscale4.running_var', 'base_model.resnext_layer1.2.bn3.num_batches_tracked', 'base_model.layer2_bak.2.mse.conv3_smallscale2.weight', 'module.base_model.layer2_bak.3.bn3.bias', 'module.base_model.layer2_bak.2.bn2.bias', 'base_model.layer2_bak.2.bn2.running_var', 'base_model.layer1_bak.1.bn1.running_mean', 'base_model.layer3_bak.1.mse.conv3_smallscale2.weight', 'module.base_model.layer4_bak.0.bn1.running_var', 'base_model.layer4_bak.0.downsample.1.bias', 'base_model.layer4_bak.0.mse.bn1.num_batches_tracked', 'base_model.layer1_bak.0.downsample.1.running_var', 'new_fc.bias', 'module.base_model.layer3_bak.5.mse.bn1.weight', 'base_model.layer2_bak.1.mse.bn3_smallscale4.bias', 'module.base_model.layer2_bak.1.mse.bn1.running_mean', 'module.base_model.layer1_bak.1.conv3.bias', 'base_model.layer2_bak.0.mse.conv2.weight', 'base_model.layer3_bak.5.mse.bn3_smallscale2.running_var', 'module.base_model.layer3_bak.3.mse.bn3_smallscale4.running_var', 'base_model.layer4_bak.1.mse.bn3_smallscale2.bias', 'module.base_model.layer3_bak.4.mse.bn3_smallscale4.bias', 'module.base_model.layer3_bak.5.bn2.running_var', 'module.base_model.layer3_bak.2.mse.bn3.running_var', 'base_model.resnext_layer1.1.conv2.weight', 'module.base_model.layer4_bak.1.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.layer1_bak.2.bn2.weight', 'base_model.layer4_bak.1.mse.bn3_smallscale4.bias', 'module.base_model.layer2_bak.0.conv3.bias', 'module.base_model.layer3_bak.4.bn2.running_mean', 'module.base_model.layer2_bak.3.bn2.running_var', 'base_model.resnext_layer1.2.bn3.running_var', 'module.base_model.layer2_bak.0.bn1.bias', 'module.base_model.layer2_bak.0.mse.conv1.weight', 'module.base_model.layer3_bak.0.conv2.bias', 'module.base_model.layer3_bak.5.bn3.weight', 'module.base_model.layer2_bak.1.conv1.weight', 'module.base_model.layer1_bak.2.conv2.weight', 'module.base_model.layer2_bak.3.mse.bn3_smallscale4.running_var', 'base_model.layer3_bak.4.mse.bn3_smallscale4.running_var', 'base_model.layer3_bak.0.shift.conv.weight', 'module.base_model.layer2_bak.3.mse.bn3_smallscale4.bias', 'base_model.layer3_bak.4.bn2.bias', 'base_model.resnext_layer1.2.bn1.running_var', 'module.base_model.layer1_bak.2.bn3.running_var', 'module.base_model.layer4_bak.0.bn3.bias', 'base_model.layer3_bak.5.conv3.weight', 'module.base_model.layer2_bak.2.mse.bn3_smallscale2.weight', 'module.base_model.layer2_bak.3.conv1.weight', 'module.base_model.layer3_bak.2.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.layer4_bak.0.conv2.bias', 'base_model.layer2_bak.2.mse.bn3_smallscale2.running_var', 'base_model.layer3_bak.2.conv1.bias', 'module.base_model.layer2_bak.3.bn3.running_mean', 'base_model.layer3_bak.5.mse.conv3_smallscale4.weight', 'module.base_model.layer3_bak.0.mse.bn1.running_mean', 'base_model.layer2_bak.3.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer2_bak.2.conv3.weight', 'module.base_model.conv1_5.0.weight', 'base_model.layer2_bak.1.bn3.running_mean', 'module.base_model.layer2_bak.2.mse.bn3.num_batches_tracked', 'base_model.layer2_bak.0.mse.bn3_smallscale2.bias', 'module.base_model.layer3_bak.3.bn2.bias', 'module.base_model.resnext_layer1.2.conv1.bias', 'base_model.layer3_bak.4.bn1.running_var', 'module.base_model.resnext_layer1.1.bn1.num_batches_tracked', 'module.base_model.layer2_bak.1.shift.conv.weight', 'module.base_model.layer3_bak.2.bn1.running_var', 'base_model.layer2_bak.0.bn2.running_mean', 'module.base_model.layer3_bak.1.mse.conv1.weight', 'base_model.layer3_bak.3.mse.conv3_smallscale4.weight', 'module.base_model.layer3_bak.1.mse.bn3.bias', 'base_model.layer3_bak.2.mse.bn3.bias', 'module.base_model.layer3_bak.5.shift.conv.weight', 'module.base_model.layer4_bak.0.downsample.1.num_batches_tracked', 'base_model.layer3_bak.1.bn2.running_mean', 'module.base_model.layer2_bak.3.mse.conv3_smallscale4.weight', 'module.base_model.layer4_bak.1.mse.bn3_smallscale2.weight', 'module.base_model.layer3_bak.4.mse.bn3_smallscale4.running_var', 'module.base_model.layer1_bak.1.bn3.num_batches_tracked', 'base_model.layer4_bak.0.mse.conv3.weight', 'base_model.layer2_bak.1.bn2.bias', 'module.base_model.layer2_bak.2.bn3.running_var', 'base_model.layer2_bak.3.bn3.bias', 'module.base_model.layer2_bak.2.mse.bn1.bias', 'module.base_model.layer2_bak.3.conv3.bias', 'module.base_model.layer3_bak.2.mse.bn3.weight', 'base_model.layer3_bak.5.bn1.num_batches_tracked', 'base_model.layer2_bak.1.mse.bn3_smallscale4.weight', 'base_model.layer2_bak.1.bn2.num_batches_tracked', 'module.base_model.layer3_bak.5.conv1.bias', 'module.base_model.layer4_bak.2.mse.bn1.running_mean', 'base_model.bn1.num_batches_tracked', 'base_model.layer2_bak.2.conv3.bias', 'base_model.layer2_bak.0.mse.bn3_smallscale4.bias', 'module.base_model.layer2_bak.0.downsample.0.weight', 'module.base_model.layer3_bak.3.shift.conv.weight', 'base_model.layer2_bak.0.mse.conv3_smallscale4.weight', 'module.base_model.resnext_layer1.2.bn2.num_batches_tracked', 'module.base_model.layer3_bak.1.mse.bn3_smallscale4.running_var', 'base_model.resnext_layer1.1.bn1.num_batches_tracked', 'base_model.layer2_bak.1.mse.conv2.weight', 'module.base_model.layer4_bak.1.bn1.bias', 'module.base_model.layer4_bak.0.mse.bn1.running_mean', 'module.base_model.layer3_bak.1.conv1.weight', 'module.base_model.resnext_layer1.1.conv2.bias', 'module.base_model.layer3_bak.2.bn2.running_mean', 'module.base_model.layer4_bak.2.mse.bn3_smallscale4.bias', 'base_model.layer4_bak.0.mse.bn3_smallscale4.running_var', 'base_model.layer2_bak.3.mse.bn1.weight', 'base_model.layer4_bak.1.mse.bn1.weight', 'module.base_model.layer3_bak.2.mse.bn3_smallscale2.running_var', 'base_model.layer2_bak.1.conv3.bias', 'module.base_model.layer3_bak.2.bn3.running_mean', 'module.base_model.layer4_bak.2.mse.bn3_smallscale2.weight', 'module.base_model.layer4_bak.2.conv3.bias', 'module.new_fc.bias', 'base_model.layer2_bak.0.mse.bn3.weight', 'base_model.layer3_bak.4.mse.bn3.running_var', 'base_model.layer3_bak.3.mse.bn3_smallscale4.running_var', 'module.base_model.layer1_bak.2.bn1.weight', 'module.base_model.layer2_bak.0.bn2.bias', 'module.base_model.layer3_bak.5.bn2.weight', 'base_model.layer1_bak.2.conv3.weight', 'base_model.layer4_bak.2.mse.bn3_smallscale4.running_mean', 'base_model.layer2_bak.2.mse.bn1.num_batches_tracked', 'base_model.layer4_bak.1.bn3.running_mean', 'base_model.layer3_bak.1.bn3.running_var', 'base_model.layer2_bak.3.mse.bn3.running_mean', 'module.base_model.layer2_bak.3.conv1.bias', 'module.base_model.layer1_bak.0.downsample.1.bias', 'module.base_model.layer3_bak.5.bn2.bias', 'base_model.layer2_bak.0.bn1.num_batches_tracked', 'module.base_model.layer2_bak.1.bn1.running_var', 'module.base_model.layer4_bak.2.bn2.bias', 'module.base_model.layer3_bak.4.mse.bn1.weight', 'module.base_model.layer2_bak.1.mse.bn3_smallscale4.running_var', 'base_model.layer1_bak.2.bn1.num_batches_tracked', 'base_model.layer2_bak.1.mse.bn3_smallscale2.weight', 'base_model.layer2_bak.3.bn1.running_mean', 'base_model.layer3_bak.2.conv3.weight', 'base_model.layer4_bak.1.bn2.num_batches_tracked', 'base_model.layer4_bak.2.mse.bn1.num_batches_tracked', 'module.base_model.layer3_bak.5.mse.conv3_smallscale4.weight', 'base_model.layer3_bak.3.mse.bn3_smallscale2.running_mean', 'base_model.layer3_bak.0.bn3.bias', 'base_model.layer3_bak.3.mse.bn1.running_var', 'module.base_model.layer4_bak.1.mse.bn3.bias', 'base_model.layer4_bak.0.mse.bn1.running_var', 'base_model.layer3_bak.3.mse.bn3_smallscale2.weight', 'module.base_model.layer2_bak.2.mse.bn1.weight', 'module.base_model.layer3_bak.4.conv3.bias', 'base_model.layer3_bak.4.conv3.bias', 'base_model.layer3_bak.2.mse.bn3.num_batches_tracked', 'base_model.layer3_bak.5.mse.bn1.running_mean', 'base_model.layer4_bak.0.mse.bn3.weight', 'module.base_model.layer1_bak.0.bn3.weight', 'base_model.layer4_bak.1.conv2.weight', 'module.base_model.resnext_layer1.1.conv1.weight', 'module.base_model.layer2_bak.0.bn2.running_var', 'module.base_model.resnext_layer1.1.bn2.num_batches_tracked', 'module.base_model.layer2_bak.2.mse.bn3_smallscale4.num_batches_tracked', 'base_model.layer1_bak.1.conv3.bias', 'base_model.layer3_bak.0.bn2.running_mean', 'base_model.layer2_bak.1.mse.bn3_smallscale2.running_mean', 'module.base_model.layer2_bak.3.mse.bn1.running_mean', 'base_model.layer2_bak.1.mse.bn3_smallscale4.running_mean', 'module.base_model.layer3_bak.0.bn1.weight', 'module.base_model.layer3_bak.4.mse.bn3.running_var', 'base_model.layer4_bak.0.bn2.running_var', 'base_model.layer3_bak.4.mse.bn3_smallscale4.bias', 'base_model.layer1_bak.2.bn3.weight', 'base_model.resnext_layer1.0.bn2.running_var', 'module.base_model.resnext_layer1.2.bn2.weight', 'module.base_model.layer2_bak.0.bn1.weight', 'base_model.layer2_bak.3.conv1.bias', 'base_model.layer3_bak.1.mse.conv3_smallscale4.weight', 'base_model.layer2_bak.3.mse.bn1.running_var', 'module.base_model.layer3_bak.3.mse.bn3_smallscale2.running_var', 'base_model.layer4_bak.2.bn3.bias', 'module.base_model.layer3_bak.5.bn1.num_batches_tracked', 'module.base_model.layer2_bak.0.bn2.weight', 'module.base_model.layer4_bak.1.bn3.running_mean', 'base_model.layer4_bak.2.bn1.bias', 'module.base_model.layer3_bak.1.bn3.num_batches_tracked', 'module.base_model.layer3_bak.4.mse.bn1.bias', 'base_model.layer2_bak.3.mse.bn3_smallscale4.weight', 'base_model.layer3_bak.0.downsample.1.running_var', 'base_model.layer4_bak.0.mse.bn3_smallscale4.weight', 'base_model.conv1_5.0.weight', 'base_model.layer4_bak.0.bn3.num_batches_tracked', 'module.base_model.layer4_bak.2.shift.conv.weight', 'module.base_model.layer3_bak.3.mse.bn1.num_batches_tracked', 'base_model.layer4_bak.2.bn1.weight', 'base_model.layer3_bak.1.mse.bn3_smallscale4.bias', 'module.base_model.layer3_bak.1.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.layer4_bak.2.bn2.running_var', 'base_model.layer3_bak.1.mse.bn3.bias', 'base_model.layer3_bak.4.mse.bn1.running_mean', 'module.base_model.layer4_bak.2.mse.bn3_smallscale4.running_mean', 'module.base_model.layer2_bak.2.mse.conv3_smallscale4.weight', 'module.base_model.layer3_bak.0.mse.bn1.weight', 'module.base_model.layer3_bak.3.mse.bn3_smallscale2.weight', 'base_model.layer2_bak.3.mse.bn3.num_batches_tracked', 'module.base_model.layer3_bak.2.mse.conv2.weight', 'module.base_model.layer4_bak.0.bn3.weight', 'base_model.layer4_bak.0.mse.conv3_smallscale2.weight', 'base_model.layer2_bak.0.mse.bn1.weight', 'module.base_model.layer4_bak.1.bn1.num_batches_tracked', 'module.base_model.layer3_bak.0.mse.bn3_smallscale2.running_var', 'module.base_model.layer3_bak.4.mse.bn1.running_mean', 'module.base_model.layer3_bak.1.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.layer2_bak.0.bn3.bias', 'base_model.layer4_bak.1.mse.bn1.running_var', 'base_model.resnext_layer1.1.bn2.bias', 'base_model.resnext_layer1.1.bn3.running_var', 'module.base_model.layer3_bak.0.mse.bn3.running_var', 'module.base_model.layer3_bak.2.mse.bn3_smallscale2.bias', 'module.base_model.layer2_bak.0.mse.bn1.running_mean', 'base_model.layer4_bak.2.bn3.weight', 'module.base_model.layer3_bak.4.conv1.bias', 'base_model.layer4_bak.0.mse.conv3_smallscale4.weight', 'base_model.layer3_bak.0.bn1.bias', 'module.base_model.layer3_bak.3.mse.bn3.weight', 'base_model.layer2_bak.0.mse.bn1.bias', 'module.base_model.layer2_bak.1.bn2.running_var', 'module.base_model.layer4_bak.0.bn1.weight', 'base_model.layer2_bak.1.mse.conv3.weight', 'module.base_model.layer3_bak.5.mse.conv2.weight', 'base_model.layer4_bak.2.bn1.running_mean', 'module.base_model.layer4_bak.1.conv2.weight', 'base_model.layer1_bak.1.bn1.num_batches_tracked', 'module.base_model.layer3_bak.1.mse.conv3_smallscale4.weight', 'base_model.layer2_bak.0.mse.bn3.running_var', 'module.base_model.layer3_bak.5.mse.bn3_smallscale4.running_var', 'module.base_model.layer3_bak.1.mse.bn3_smallscale4.running_mean', 'base_model.layer2_bak.1.mse.conv3_smallscale4.weight', 'module.base_model.layer4_bak.1.conv3.bias', 'module.base_model.layer3_bak.1.bn3.weight', 'module.base_model.layer3_bak.2.bn1.weight', 'module.base_model.layer1_bak.1.bn2.num_batches_tracked', 'module.base_model.conv1.weight', 'module.base_model.layer3_bak.4.mse.bn3.num_batches_tracked', 'module.base_model.layer3_bak.0.bn1.bias', 'module.base_model.layer4_bak.0.mse.conv3_smallscale2.weight', 'module.base_model.layer4_bak.2.mse.bn1.weight', 'module.base_model.layer2_bak.3.mse.bn3.num_batches_tracked', 'base_model.layer3_bak.0.conv2.bias', 'module.base_model.layer3_bak.2.mse.bn3.bias', 'base_model.resnext_layer1.2.bn1.num_batches_tracked', 'base_model.layer3_bak.4.conv2.bias', 'base_model.layer1_bak.2.bn2.weight', 'base_model.layer4_bak.2.mse.bn1.running_mean', 'module.base_model.layer4_bak.1.mse.bn3_smallscale2.running_var', 'base_model.conv1_5.1.running_var', 'base_model.layer4_bak.1.conv1.bias', 'module.base_model.layer4_bak.2.mse.bn3.running_mean', 'base_model.layer2_bak.0.downsample.1.running_var', 'module.base_model.layer3_bak.4.mse.bn3_smallscale2.running_var', 'base_model.layer4_bak.1.bn3.num_batches_tracked', 'module.base_model.layer3_bak.1.mse.bn3_smallscale4.bias', 'base_model.layer2_bak.3.bn1.bias', 'base_model.layer1_bak.0.bn1.bias', 'base_model.resnext_layer1.2.bn1.bias', 'base_model.layer2_bak.2.mse.conv1.weight', 'base_model.layer2_bak.0.conv2.weight', 'module.base_model.layer3_bak.5.mse.bn3_smallscale2.weight', 'module.base_model.layer1_bak.0.bn2.running_var', 'module.base_model.layer2_bak.0.mse.bn3_smallscale4.weight', 'module.base_model.layer3_bak.1.bn2.num_batches_tracked', 'base_model.layer2_bak.1.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.layer3_bak.4.bn3.weight', 'module.base_model.layer3_bak.3.mse.bn1.running_var', 'base_model.layer1_bak.1.conv1.weight', 'base_model.layer1_bak.1.conv2.weight', 'module.base_model.layer4_bak.1.mse.bn3_smallscale4.bias', 'base_model.layer3_bak.2.mse.bn3_smallscale2.running_mean', 'module.base_model.layer3_bak.0.downsample.1.bias', 'module.base_model.layer3_bak.0.mse.bn3.bias', 'module.base_model.conv1_5.1.running_mean', 'base_model.layer4_bak.0.bn2.weight', 'base_model.layer4_bak.1.mse.bn3_smallscale4.running_var', 'base_model.layer2_bak.0.mse.bn3_smallscale4.num_batches_tracked', 'module.base_model.layer2_bak.0.bn3.running_var', 'base_model.layer3_bak.4.mse.bn1.num_batches_tracked', 'base_model.layer2_bak.1.conv3.weight', 'module.base_model.layer2_bak.0.bn3.num_batches_tracked', 'base_model.layer3_bak.4.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer2_bak.2.mse.bn3_smallscale4.running_var', 'module.base_model.layer3_bak.3.mse.bn3.bias', 'base_model.layer3_bak.4.bn1.weight', 'module.base_model.layer3_bak.5.mse.bn3_smallscale2.bias', 'base_model.layer4_bak.0.bn2.num_batches_tracked', 'base_model.resnext_layer1.0.bn2.running_mean', 'base_model.layer2_bak.2.bn1.running_var', 'base_model.layer3_bak.5.conv2.weight', 'base_model.layer2_bak.2.mse.bn3_smallscale4.weight', 'module.base_model.resnext_layer1.0.bn2.running_mean', 'module.base_model.layer2_bak.1.mse.bn3_smallscale4.weight', 'module.base_model.layer4_bak.1.mse.bn1.running_var', 'module.base_model.layer2_bak.3.bn2.running_mean', 'module.base_model.layer3_bak.3.mse.conv3_smallscale4.weight', 'module.base_model.resnext_layer1.2.bn2.bias', 'module.base_model.resnext_layer1.0.bn3.running_mean', 'base_model.layer3_bak.5.bn1.running_mean', 'base_model.layer2_bak.2.bn1.running_mean', 'base_model.layer3_bak.0.mse.bn1.weight', 'base_model.layer3_bak.0.downsample.1.weight', 'base_model.layer2_bak.2.bn3.bias', 'base_model.layer3_bak.4.mse.bn3.running_mean', 'module.base_model.layer2_bak.3.shift.conv.weight', 'module.base_model.layer4_bak.1.bn2.bias', 'module.base_model.layer3_bak.1.bn2.bias', 'module.base_model.layer3_bak.5.mse.bn3_smallscale2.num_batches_tracked', 'base_model.layer1_bak.0.bn3.running_var', 'module.base_model.layer3_bak.4.mse.bn3_smallscale4.running_mean', 'module.base_model.layer1_bak.0.bn3.bias', 'module.base_model.layer1_bak.2.bn3.weight', 'new_fc.weight', 'module.base_model.layer2_bak.2.mse.conv2.weight', 'module.base_model.layer2_bak.2.bn3.bias', 'module.base_model.layer3_bak.1.bn2.running_var', 'base_model.layer2_bak.2.bn2.num_batches_tracked', 'base_model.layer3_bak.2.bn3.running_mean', 'module.base_model.resnext_layer1.0.bn2.num_batches_tracked', 'module.base_model.layer1_bak.1.conv3.weight', 'module.base_model.layer4_bak.1.mse.bn3_smallscale4.running_mean', 'module.base_model.layer3_bak.2.bn3.bias', 'base_model.layer4_bak.1.shift.conv.weight', 'base_model.layer3_bak.2.bn3.bias', 'module.base_model.resnext_layer1.2.conv3.weight', 'module.base_model.layer2_bak.2.mse.bn3_smallscale4.bias', 'module.base_model.layer3_bak.1.bn3.bias', 'module.base_model.resnext_layer1.1.conv3.weight', 'base_model.layer4_bak.1.mse.bn1.num_batches_tracked', 'base_model.layer4_bak.0.conv3.weight', 'base_model.layer4_bak.2.mse.conv1.weight', 'module.base_model.layer3_bak.4.bn2.running_var', 'module.base_model.layer3_bak.0.mse.bn1.num_batches_tracked', 'base_model.layer3_bak.0.bn1.num_batches_tracked', 'base_model.layer1_bak.1.bn2.num_batches_tracked', 'module.base_model.layer1_bak.1.bn2.running_mean', 'base_model.layer2_bak.0.downsample.1.running_mean', 'module.base_model.layer1_bak.1.bn3.weight', 'base_model.conv1_5.1.weight', 'base_model.layer2_bak.2.mse.bn3_smallscale2.running_mean', 'module.base_model.layer4_bak.2.mse.conv3_smallscale4.weight', 'base_model.resnext_layer1.0.bn1.running_mean', 'module.base_model.resnext_layer1.0.conv3.weight', 'module.base_model.layer2_bak.2.mse.bn3.running_var', 'base_model.layer3_bak.3.mse.bn3_smallscale4.bias', 'base_model.layer2_bak.3.mse.bn3.weight', 'module.base_model.layer3_bak.4.mse.bn3.running_mean', 'base_model.layer1_bak.1.conv1.bias', 'module.base_model.layer1_bak.1.bn3.running_mean', 'module.base_model.layer4_bak.0.mse.bn3_smallscale2.running_var', 'base_model.layer3_bak.2.bn2.running_mean', 'module.base_model.resnext_layer1.1.bn3.running_mean', 'base_model.layer2_bak.2.mse.conv2.weight', 'base_model.layer3_bak.5.mse.bn3_smallscale2.num_batches_tracked', 'module.base_model.layer2_bak.0.downsample.1.weight', 'module.base_model.layer4_bak.0.conv3.weight', 'module.base_model.layer1_bak.0.bn1.weight', 'module.base_model.layer3_bak.4.mse.bn3.weight', 'module.base_model.layer4_bak.0.bn2.bias', 'module.base_model.layer3_bak.4.bn3.num_batches_tracked', 'base_model.layer3_bak.4.mse.bn3_smallscale2.running_var', 'base_model.layer3_bak.3.mse.bn3.running_mean', 'base_model.resnext_layer1.2.conv2.weight', 'base_model.layer4_bak.2.bn3.running_var', 'base_model.layer3_bak.3.shift.conv.weight', 'base_model.layer2_bak.2.bn3.running_var', 'module.base_model.layer4_bak.2.mse.bn3_smallscale4.weight', 'module.base_model.bn1.running_var', 'module.base_model.layer4_bak.2.mse.bn3.bias', 'module.base_model.layer3_bak.3.conv1.weight', 'base_model.layer2_bak.3.conv1.weight', 'module.base_model.layer3_bak.2.mse.bn3_smallscale2.running_mean', 'module.base_model.layer2_bak.2.bn1.num_batches_tracked', 'module.base_model.layer2_bak.1.bn1.running_mean', 'base_model.layer4_bak.1.mse.bn1.bias', 'base_model.conv1.weight', 'module.base_model.layer3_bak.3.bn1.running_mean', 'base_model.layer2_bak.2.mse.bn3_smallscale4.bias', 'module.base_model.layer2_bak.0.shift.conv.weight', 'module.base_model.bn1.weight', 'module.base_model.layer1_bak.0.downsample.0.weight', 'module.base_model.layer2_bak.2.mse.bn1.num_batches_tracked', 'base_model.layer3_bak.3.mse.bn3_smallscale2.num_batches_tracked', 'base_model.resnext_layer1.1.conv2.bias', 'module.base_model.layer1_bak.1.bn2.running_var', 'base_model.layer3_bak.2.mse.bn3_smallscale4.running_var', 'base_model.layer4_bak.1.conv2.bias', 'base_model.bn1.running_mean', 'base_model.resnext_layer1.0.conv1.bias', 'base_model.layer2_bak.0.mse.bn3_smallscale2.running_var', 'base_model.layer4_bak.0.downsample.0.weight', 'module.base_model.resnext_layer1.2.bn2.running_mean', 'base_model.layer3_bak.2.bn3.running_var', 'base_model.layer3_bak.2.bn1.bias', 'module.base_model.layer4_bak.0.mse.bn3_smallscale4.bias', 'base_model.layer3_bak.2.mse.bn1.bias', 'base_model.resnext_layer1.0.conv2.weight', 'base_model.layer4_bak.0.shift.conv.weight', 'module.base_model.layer2_bak.0.downsample.1.running_var', 'base_model.layer2_bak.1.mse.bn3_smallscale4.running_var', 'base_model.layer3_bak.3.mse.bn1.running_mean', ...........................

    opened by sanwei111 2
  • frames*crops*clips  and train_log

    frames*crops*clips and train_log

    hello,professor. could i please ask u 2 question? 1.what‘s the meaning of framescropsclips? frames:the frame fed to model in test?but i actually give 80 frames(a full video) to model,how to become less? crops:means crop different parts of an original image? clips:could u please tell me the detail about clip?

    2.i have train some new data from your pretrained model。a little weird,i set epoch to 35,but in the first epoch,its loss cames to the least:0.67,and almost keep the same,and the Testing Results almost keeps the same,how could it be?

    opened by sanwei111 0
  • About hmdb51 Dataset

    About hmdb51 Dataset

    Hello, I want to train on hmdb51 dataset, so I wonder whether to make the dataset format like something-something or kinetics400 as you cited in the data preparation part. Thank you a lot.

    opened by yyhyyh17 0
Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 3, 2023
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo

Alex 236 Dec 21, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 3, 2023
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 4, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

null 27 Jul 20, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

null 11 Oct 8, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

null 11 Dec 13, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

This repository is the official PyTorch implementation of Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

hippopmonkey 4 Dec 11, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 3, 2023