Learning Representations that Support Robust Transfer of Predictors

Related tags

Deep Learning TRM
Overview

Transfer Risk Minimization (TRM)

Code for Learning Representations that Support Robust Transfer of Predictors

Prepare the Datasets

Preprocess the SceneCOCO dataset :

# preprocess COCO
python coco.py
# preprocess Places
python places.py

# generate SceceCOCO dataset
python cocoplaces.py

Running the Experiments

python -m domainbed.scripts.train  --data_dir {root} --algorithm {alg} \
	--dataset {dataset} --trial_seed {t_seed} --epochs {epochs}  (--resnet50)

root: root directory for the data
alg: ERM, VREx, IRM, GroupDRO, Fish, MLDG, TRM
t_seed: seed for data splitting
dataset: PACS or OfficeHome or ColoredMNIST or SceneCOCO
resnet50: use ResNet50 (default: ResNet18)
epochs: training epochs

This implementation is based on / inspired by:

You might also like...
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Learning Dense Representations of Phrases at Scale (Lee et al., 2020)
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Code for the paper
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]
Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations. [2021]

Revisiting Contrastive Methods for Unsupervised Learning of Visual Representations This repo contains the Pytorch implementation of our paper: Revisit

Comments
  • cocoplaces.py

    cocoplaces.py

    Hello,

    I am interested in generating the annotated CoCoPlaces dataset with your code. However it seem that the cocoplaces.py script is by mistake identical to places.py and does not in fact create the merged files. Would you be so kind as to provide the correct script?

    Best Vít.

    opened by vitskvara 0
Owner
Yilun Xu
Hello!
Yilun Xu
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP ?? WIP ?? Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP ?? ?? Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms, or readily apply existing algorithms.

THUML @ Tsinghua University 2.2k Jan 3, 2023
LBK 35 Dec 26, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 5, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

null 75 Dec 16, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

Katsuya Hyodo 24 Mar 2, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-based API design, PyKale enforces standardization and minimalism, via reusing existing resources, reducing repetitions and redundancy, and recycling learning models across areas.

PyKale 370 Dec 27, 2022