Structural basis for solubility in protein expression systems

Overview

Structural basis for solubility in protein expression systems

Twitter Follow GitHub repo size

Large-scale protein production for biotechnology and biopharmaceutical applications rely on high protein solubility in expression systems. Solubility has been measured for a significant fraction of E. coli and S. cerevisiae proteomes and these datasets are routinely used to train predictors of protein solubility in different organisms. Thanks to continued advances in experimental structure-determination and modelling, many of these solubility measurements can now be paired with accurate structural models.

The challenge is mentored by Christopher Ing and Mark Fingerhuth.

Aim of the challenge

It is the objective of this project to use our provided dataset of protein structure and solubility value pairs in order to produce a solubility predictor with comparable accuracy to sequence-based predictors reported in the literature. The provided dataset to be used in this project is created by following the dataset curation procedure described in the SOLart paper, and this hackathon project has a similar aim to this manuscript.

The dataset

The process of generating the dataset is described in the SOLArt manuscript. At a high level, all experimentally tested E. coli and S. cerevisiae proteins were matched through Uniprot IDs to known crystallographic structures or high sequence similarity homology models. After balancing the fold types using CATH, a dataset containing a balanced spread of solubility values was produced. The resulting proteins for the training and testing of these models were prepared and disclosed in the supplemental material of this paper as a list of (Uniprot,PDB,Chain,Solubility) pairs. The PDB files were not included in this work so we had to re-extract them from SWISS-MODEL. Whenever a crystallographic structure was present, it was used, assuming high coverage over the Uniprot sequence. In some cases, the original PDB templates used within the original SOLArt paper had been superceded by improved templates, and we opted to take the highest resolution, highest sequence identity, models in our updated dataset. We stripped away all irrelevant chains and heteroatoms.

If issues are identified with individual structures, please refer to the Uniprot ID and manually investigate the best template. In some cases, we needed to improve structure correctness by modelling missing atoms/residues inside the Chemical Computing Group software MOE on a case-by-case basis.

The dataset can be found in the data/ subdirectory - it is already divided into training/ and test/ data. The training/ data comes with solubility_values.csv and solublity_values.yaml (same content just different format) which both contain the solubility target values for all the PDB files provided in that directory. Note that each PDB file is named after the Uniprot identifier of the respective protein and the protein column in the solubility_values.csv also contains the Uniprot identifiers.

The test/ dataset consists of three different subdirectories (protein structures derived from different organisms and with different approaches) and you should NOT use them for any training. Only the yeast_crystal_structs/ directory contains solubility_values.csv and solublity_values.yaml (same content just different format) files which you can use for some local testing & validation. In order to find out your performance on the entire test dataset you need to use the automated benchmarking system (see below).

Example output

Your code should output a file called predictions.csv in the following format:

protein,solubility
P69829,83
P31133,62

whereby the protein column contains the Uniprot ID (corresponds to the filename of the PDB files) and the solubility column contains the predicted solubility value (can be int or float).

Note, that there are three (!) test subsets but you are expected to submit all the predictions in one file (not three) for the benchmarking system to work.

Automated benchmarking system

The continuous integration script in .github/workflows/ci.yml will automatically build the Dockerfile on every commit to the main branch. This docker image will be published as your hackathon submission to https://biolib.com//. For this to work, make sure you set the BIOLIB_TOKEN and BIOLIB_PROJECT_URI accordingly as repository secrets.

To read more about the benchmarking system click here.

Say thanks

Give this repo a star: GitHub Repo stars

Star the ProteinQure org on Github: GitHub Org's stars

You might also like...
Using Python to parse through email logs received through several backup systems.

outlook-automated-backup-control Backup monitoring on a mailbox: In this mailbox there will be backup logs. The identification will based on the follo

Demo code for
Demo code for "Logs in distributed systems" webinar

Hexlet Logs Demo Пререквизиты docker-compose python3 Учетка в DataDog Базовое понимание, что такое логи (можно почитать гайд

Cylc: a workflow engine for cycling systems

Cylc: a workflow engine for cycling systems. Repository master branch: core meta-scheduler component of cylc-8 (in development); Repository 7.8.x branch: full cylc-7 system.

Unzip Japanese Shift-JIS zip archives on non-Japanese systems.
Unzip Japanese Shift-JIS zip archives on non-Japanese systems.

Unzip JP GUI Unzip Japanese Shift-JIS zip archives on non-Japanese systems. This script unzips the file while converting the file names from Shift-JIS

A micro-service that can be extended to help in monitoring systems

A micro-service that can be extended to help in monitoring systems. Be extensible to be incorporated in any of the systems to facilitate timely interventions.

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

Code release for NeX: Real-time View Synthesis with Neural Basis Expansion
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

Code release for NeX: Real-time View Synthesis with Neural Basis Expansion
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

 NBEATSx: Neural basis expansion analysis with exogenous variables
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

An advanced real time threat intelligence framework to identify threats and malicious web traffic on the basis of IP reputation and historical data.
An advanced real time threat intelligence framework to identify threats and malicious web traffic on the basis of IP reputation and historical data.

ARTIF is a new advanced real time threat intelligence framework built that adds another abstraction layer on the top of MISP to identify threats and malicious web traffic on the basis of IP reputation and historical data. It also performs automatic enrichment and threat scoring by collecting, processing and correlating observables based on different factors.

Code release for NeX: Real-time View Synthesis with Neural Basis Expansion
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

MaD GUI is a basis for graphical annotation and computational analysis of time series data.
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Used to record WKU's utility bills on a regular basis.
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

An advanced multi-threaded, multi-client python reverse shell for hacking linux systems. There's still more work to do so feel free to help out with the development. Disclaimer: This reverse shell should only be used in the lawful, remote administration of authorized systems. Accessing a computer network without authorization or permission is illegal. Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

generate HPC scheduler systems jobs input scripts and submit these scripts to HPC systems and poke until they finish

DPDispatcher DPDispatcher is a python package used to generate HPC(High Performance Computing) scheduler systems (Slurm/PBS/LSF/dpcloudserver) jobs in

Owner
ProteinQure
ProteinQure
These are the scripts used for the project of ‘Assembly of a pan-genome for global cattle reveals missing sequence and novel structural variation, providing new insights into their diversity and evolution history’

script-SV-genotyping These are the scripts used for the project of ‘Assembly of a pan-genome for global cattle reveals missing sequence and novel stru

null 2 Aug 26, 2022
RFDesign - Protein hallucination and inpainting with RoseTTAFold

RFDesign: Protein hallucination and inpainting with RoseTTAFold Jue Wang (juewan

null 139 Jan 6, 2023
emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.

emoji-math computes the given python expression and returns either the value or the nearest 5 emojis as measured by cosine similarity.

Andrew White 13 Dec 11, 2022
Expression interpreter written in Python

Calc Interpreter An interpreter modeled after a calculator implemented in Python 3. The program currently only supports basic mathematical expressions

null 1 Oct 17, 2021
LSO, also known as Linux Swap Operator, is a software with both GUI and terminal versions that you can manage the Swap area for Linux operating systems.

LSO - Linux Swap Operator Türkçe - LSO Nedir? LSO, diğer adıyla Linux Swap Operator Linux işletim sistemleri için Swap alanını yönetebileceğiniz hem G

Eren İnce 4 Feb 9, 2022
ASVspoof 2021 Baseline Systems

ASVspoof 2021 Baseline Systems Baseline systems are grouped by task: Speech Deepfake (DF) Logical Access (LA) Physical Access (PA) Please find more de

null 91 Dec 28, 2022
Control System Packer is a lightweight, low-level program to transform energy equations into the compact libraries for control systems.

Control System Packer is a lightweight, low-level program to transform energy equations into the compact libraries for control systems. Packer supports Python ?? , C ?? and C++ ?? libraries.

mirnanoukari 31 Sep 15, 2022
Test reproducibility of leiden/umap on different systems

Demonstrate that UMAP and Leiden analysis is not reproducible between different cpu architectures.

Gregor Sturm 2 Oct 16, 2021
EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in an efficient way.

EasyBuild is a software build and installation framework that allows you to manage (scientific) software on High Performance Computing (HPC) systems in an efficient way.

EasyBuild community 87 Dec 27, 2022
Intelligent Systems Project In Python

Intelligent Systems Project In Python

RLLAB 3 May 16, 2022