CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

Overview

CPPE - 5 Twitter

GitHub Repo stars PyPI Code style: black

CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization of medical personal protective equipments, which is not possible with other popular data sets that focus on broad level categories.

Accompanying paper: CPPE - 5: Medical Personal Protective Equipment Dataset

by Rishit Dagli and Ali Mustufa Shaikh.

Some features of this dataset are:

  • high quality images and annotations (~4.6 bounding boxes per image)
  • real-life images unlike any current such dataset
  • majority of non-iconic images (allowing easy deployment to real-world environments)
  • >15 pre-trained models in the model zoo availaible to directly use (also for mobile and edge devices)

Get the data

We strongly recommend you use either the downlaoder script or the Python package to download the dataset however you could also download and extract it manually.

Name Size Drive Bucket MD5 checksum
dataset.tar.gz ~230 MB Download Download f4e043f983cff94ef82ef7d57a879212

Downloader Script

The easiest way to download the dataset is to use the downloader script:

git clone https://github.com/Rishit-dagli/CPPE-Dataset.git
cd CPPE-Dataset
bash tools/download.sh

Python package

You can also use the Python package to get the dataset:

pip install cppe5
import cppe5
cppe5.download_data()

Labels

The dataset contains the following labels:

Label Description
1 Coverall
2 Face_Shield
3 Gloves
4 Goggles
5 Mask

Model Zoo

More information about the pre-trained models (like modlel complexity or FPS benchmark) could be found in MODEL_ZOO.md and LITE_MODEL_ZOO.md includes models ready for deployment on mobile and edge devices.

Baseline Models

This section contains the baseline models that are trained on the CPPE-5 dataset . More information about how these are trained could be found in the original paper and the config files.

Method APbox AP50box AP75box APSbox APMbox APLbox Configs TensorBoard.dev PyTorch model TensorFlow model
SSD 29.50 57.0 24.9 32.1 23.1 34.6 config tb.dev bucket bucket
YOLO 38.5 79.4 35.3 23.1 28.4 49.0 config tb.dev bucket bucket
Faster RCNN 44.0 73.8 47.8 30.0 34.7 52.5 config tb.dev bucket bucket

SoTA Models

This section contains the SoTA models that are trained on the CPPE-5 dataset . More information about how these are trained could be found in the original paper and the config files.

Method APbox AP50box AP75box APSbox APMbox APLbox Configs TensorBoard.dev PyTorch model TensorFlow model
RepPoints 43.0 75.9 40.1 27.3 36.7 48.0 config tb.dev bucket -
Sparse RCNN 44.0 69.6 44.6 30.0 30.6 54.7 config tb.dev bucket -
FCOS 44.4 79.5 45.9 36.7 39.2 51.7 config tb.dev bucket bucket
Grid RCNN 47.5 77.9 50.6 43.4 37.2 54.4 config tb.dev bucket -
Deformable DETR 48.0 76.9 52.8 36.4 35.2 53.9 config tb.dev bucket -
FSAF 49.2 84.7 48.2 45.3 39.6 56.7 config tb.dev bucket bucket
Localization Distillation 50.9 76.5 58.8 45.8 43.0 59.4 config tb.dev bucket -
VarifocalNet 51.0 82.6 56.7 39.0 42.1 58.8 config tb.dev bucket -
RegNet 51.3 85.3 51.8 35.7 41.1 60.5 config tb.dev bucket bucket
Double Heads 52.0 87.3 55.2 38.6 41.0 60.8 config tb.dev bucket -
DCN 51.6 87.1 55.9 36.3 41.4 61.3 config tb.dev bucket -
Empirical Attention 52.5 86.5 54.1 38.7 43.4 61.0 config tb.dev bucket -
TridentNet 52.9 85.1 58.3 42.6 41.3 62.6 config tb.dev bucket bucket

Tools

We also include the following tools in this repository to make working with the dataset a lot easier:

  • Download data
  • Download TF Record files
  • Convert PNG images in dataset to JPG Images
  • Converting Pascal VOC to COCO format
  • Update dataset to use relative paths

More information about each tool can be found in the tools/README.md file.

Tutorials

We also present some tutorials on how to use the dataset in this repository as Colab notebooks:

In this notebook we will load the CPPE - 5 dataset in PyTorch and also see a quick example of fine-tuning the Faster RCNN model with torchvision on this dataset.

In this notebook we will load the CPPE - 5 dataset through TF Record files in TensorFlow.

In this notebook, we will visualize the CPPE-5 dataset, which could be really helpful to see some sample images and annotations from the dataset.

Citation

If you use this dataset, please cite the following paper:

[WIP]

Acknoweldgements

The authors would like to thank Google for supporting this work by providing Google Cloud credits. The authors would also like to thank Google TPU Research Cloud (TRC) program for providing access to TPUs. The authors are also grateful to Omkar Agrawal for help with verifying the difficult annotations.

Want to Contribute ๐Ÿ™‹โ€โ™‚๏ธ ?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? ๐Ÿ’ฌ

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Have you used this work in your paper, blog, experiments, or more please share it with us by making a discussion under the Show and Tell category.

Comments
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 10% ๐ŸŽ‰

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /media/image_vs_sqrt_width_height.png | 13.00kb | 7.78kb | 40.13% | | /media/image_vs_width_height.png | 12.11kb | 8.02kb | 33.77% | | /media/flops.png | 443.40kb | 376.09kb | 15.18% | | /media/non_iconic_and_iconic.png | 5,313.39kb | 4,531.29kb | 14.72% | | /media/params.png | 483.86kb | 413.81kb | 14.48% | | /media/image_stats.png | 28.35kb | 25.94kb | 8.47% | | /media/annotation_type.png | 2,166.55kb | 2,065.88kb | 4.65% | | /media/sample_images.jpg | 2,128.97kb | 2,091.09kb | 1.78% | | | | | | | Total : | 10,589.62kb | 9,519.91kb | 10.10% |


    ๐Ÿ“ docs | :octocat: repo | ๐Ÿ™‹๐Ÿพ issues | ๐Ÿช marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 0
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    Beep boop. Your images are optimized!

    Your image file size has been reduced by 10% ๐ŸŽ‰

    Details

    | File | Before | After | Percent reduction | |:--|:--|:--|:--| | /media/image_vs_sqrt_width_height.png | 13.00kb | 7.78kb | 40.13% | | /media/image_vs_width_height.png | 12.11kb | 8.02kb | 33.77% | | /media/non_iconic_and_iconic.png | 5,313.39kb | 4,531.29kb | 14.72% | | /media/model_complexity.png | 17.24kb | 15.42kb | 10.57% | | /media/image_stats.png | 28.35kb | 25.94kb | 8.47% | | /media/annotation_type.png | 2,166.55kb | 2,065.88kb | 4.65% | | /media/sample_images.jpg | 2,128.97kb | 2,091.09kb | 1.78% | | | | | | | Total : | 9,679.60kb | 8,745.43kb | 9.65% |


    ๐Ÿ“ docs | :octocat: repo | ๐Ÿ™‹๐Ÿพ issues | ๐Ÿช marketplace

    ~Imgbot - Part of Optimole family

    opened by imgbot[bot] 0
  • Update annotations on data_loader

    Update annotations on data_loader

    :camera: Screenshots

    Changes

    :page_facing_up: Context

    I realized in your code before, that you just assign '1' as the labels for each object. This is proved by creating a tensor of ones for labels like this labels = torch.ones((num_objs,), dtype=torch.int64). When I tried my model to do inference on my sample image, I got the labels '1' for each object and then I realized there was something wrong with the dataset.

    :pencil: Changes

    I just add a little bit of code on your custom Cppe dataset in torch.py. Now, the labels not only '1' for each object in an image, but also have a correspondence with each object based on your dataset.

    :paperclip: Related PR

    :no_entry_sign: Breaking

    None so far.

    :hammer_and_wrench: How to test

    :stopwatch: Next steps

    opened by danielsyahputra 0
  • Request for the test dataset contained 100 images in the paper, thanks

    Request for the test dataset contained 100 images in the paper, thanks

    I want to implement your paper "CPPE - 5: MEDICAL PERSONAL PROTECTIVE EQUIPMENT DATASET" and experiment with it. In the dataset downloaded from your github website, the training set contains 1000 images and the test set contains 29 images. However, I did not find the test set you used in your paper which contains another 100 images. I would highly appreciate it if you could share the test dataset in your paper.

    enhancement 
    opened by pgy1go 0
  • the test dataset in paper request

    the test dataset in paper request

    I want to implement your paper "CPPE - 5: MEDICAL PERSONAL PROTECTIVE EQUIPMENT DATASET" and experiment with it. In the dataset downloaded from your github website, the training set contains 1000 images and the test set contains 29 images. However, I did not find the test set you used in your paper which contains another 100 images. I would highly appreciate it if you could share the test dataset in your paper.

    bug 
    opened by pgy1go 0
  • License Restrictions on dataset

    License Restrictions on dataset

    Hi, please share the dataset license restrictions and image copyright mentions. I would like to use your dataset for a course/book am writing on deep learning.

    Thanks.

    question 
    opened by abhi-kumar 1
Releases(v0.1.0)
  • v0.1.0(Dec 14, 2021)

    CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization of medical personal protective equipments, which is not possible with other popular data sets that focus on broad level categories.

    Some features of this dataset are:

    • high quality images and annotations (~4.6 bounding boxes per image)
    • real-life images unlike any current such dataset
    • majority of non-iconic images (allowing easy deployment to real-world environments)
    • >15 pre-trained models in the model zoo availaible to directly use (also for mobile and edge devices)

    The Python package allows to:

    • download data easily
    • download TF records
    • loading dataset in PyTorch and TensorFlow
    Source code(tar.gz)
    Source code(zip)
Owner
Rishit Dagli
High School,TEDx,2xTED-Ed speaker | International Speaker | Microsoft Student Ambassador | Mentor, @TFUGMumbai | Organize @KotlinMumbai
Rishit Dagli
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

null 5 Dec 10, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

null 3 Jan 26, 2022
KazuhitoTakahashi 41 Nov 23, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

null 82 Dec 15, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

null 2 Dec 26, 2021
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 4, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and testing data for various deep learning projects such as 6D object pose estimation projects singleshotpose, as well as object detection and instance segmentation projects.

null 305 Dec 16, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

null 6 Feb 3, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

null 76 Dec 12, 2022
YOLOv5 ๐Ÿš€ is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 ?? is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

้˜ฟๆ‰ 73 Dec 16, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image, and next a ResNet50 model trained on ImageNet is used to label each box.

Ibai Gorordo 24 Nov 14, 2022