I have installed the dependencies and downloaded dateset as explained in README.md
While executing the main.py as
./main.py --config-file config/MonoRCNN_KITTI.yaml --num-gpus 1 --resume --eval-only
and by setting the VISUALIZE to True.
I got output results in /output/evaluation/test/visualization
. However, the bounding boxes in output images are completely random and incorrect, program doesn't seem to work correctly.
I don't know how I should approach troubleshooting this issue.
My Environment.
CUDA 11.0
Python 3.8.5
Torch 1.7.1
I installed Detectrone2 from its official page.
Edit:
This part of command line output seems to be the problem.
[05/09 02:15:03 d2.checkpoint.c2_model_loading]: Following weights matched with submodule backbone.bottom_up:
| Names in Model | Names in Checkpoint | Shapes |
|:------------------|:-------------------------|:------------------------------------------------|
| res2.0.conv1.* | res2_0_branch2a_{bn_,w} | (64,) (64,) (64,) (64,) (64,64,1,1) |
| res2.0.conv2. | res2_0_branch2b_{bn_,w} | (64,) (64,) (64,) (64,) (64,64,3,3) |
| res2.0.conv3. | res2_0_branch2c_{bn_,w} | (256,) (256,) (256,) (256,) (256,64,1,1) |
| res2.0.shortcut. | res2_0_branch1_{bn_,w} | (256,) (256,) (256,) (256,) (256,64,1,1) |
| res2.1.conv1. | res2_1_branch2a_{bn_,w} | (64,) (64,) (64,) (64,) (64,256,1,1) |
| res2.1.conv2. | res2_1_branch2b_{bn_,w} | (64,) (64,) (64,) (64,) (64,64,3,3) |
| res2.1.conv3. | res2_1_branch2c_{bn_,w} | (256,) (256,) (256,) (256,) (256,64,1,1) |
| res2.2.conv1. | res2_2_branch2a_{bn_,w} | (64,) (64,) (64,) (64,) (64,256,1,1) |
| res2.2.conv2. | res2_2_branch2b_{bn_,w} | (64,) (64,) (64,) (64,) (64,64,3,3) |
| res2.2.conv3. | res2_2_branch2c_{bn_,w} | (256,) (256,) (256,) (256,) (256,64,1,1) |
| res3.0.conv1. | res3_0_branch2a_{bn_,w} | (128,) (128,) (128,) (128,) (128,256,1,1) |
| res3.0.conv2. | res3_0_branch2b_{bn_,w} | (128,) (128,) (128,) (128,) (128,128,3,3) |
| res3.0.conv3. | res3_0_branch2c_{bn_,w} | (512,) (512,) (512,) (512,) (512,128,1,1) |
| res3.0.shortcut. | res3_0_branch1_{bn_,w} | (512,) (512,) (512,) (512,) (512,256,1,1) |
| res3.1.conv1. | res3_1_branch2a_{bn_,w} | (128,) (128,) (128,) (128,) (128,512,1,1) |
| res3.1.conv2. | res3_1_branch2b_{bn_,w} | (128,) (128,) (128,) (128,) (128,128,3,3) |
| res3.1.conv3. | res3_1_branch2c_{bn_,w} | (512,) (512,) (512,) (512,) (512,128,1,1) |
| res3.2.conv1. | res3_2_branch2a_{bn_,w} | (128,) (128,) (128,) (128,) (128,512,1,1) |
| res3.2.conv2. | res3_2_branch2b_{bn_,w} | (128,) (128,) (128,) (128,) (128,128,3,3) |
| res3.2.conv3. | res3_2_branch2c_{bn_,w} | (512,) (512,) (512,) (512,) (512,128,1,1) |
| res3.3.conv1. | res3_3_branch2a_{bn_,w} | (128,) (128,) (128,) (128,) (128,512,1,1) |
| res3.3.conv2. | res3_3_branch2b_{bn_,w} | (128,) (128,) (128,) (128,) (128,128,3,3) |
| res3.3.conv3. | res3_3_branch2c_{bn_,w} | (512,) (512,) (512,) (512,) (512,128,1,1) |
| res4.0.conv1. | res4_0_branch2a_{bn_,w} | (256,) (256,) (256,) (256,) (256,512,1,1) |
| res4.0.conv2. | res4_0_branch2b_{bn_,w} | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res4.0.conv3. | res4_0_branch2c_{bn_,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1) |
| res4.0.shortcut. | res4_0_branch1_{bn_,w} | (1024,) (1024,) (1024,) (1024,) (1024,512,1,1) |
| res4.1.conv1. | res4_1_branch2a_{bn_,w} | (256,) (256,) (256,) (256,) (256,1024,1,1) |
| res4.1.conv2. | res4_1_branch2b_{bn_,w} | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res4.1.conv3. | res4_1_branch2c_{bn_,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1) |
| res4.2.conv1. | res4_2_branch2a_{bn_,w} | (256,) (256,) (256,) (256,) (256,1024,1,1) |
| res4.2.conv2. | res4_2_branch2b_{bn_,w} | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res4.2.conv3. | res4_2_branch2c_{bn_,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1) |
| res4.3.conv1. | res4_3_branch2a_{bn_,w} | (256,) (256,) (256,) (256,) (256,1024,1,1) |
| res4.3.conv2. | res4_3_branch2b_{bn_,w} | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res4.3.conv3. | res4_3_branch2c_{bn_,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1) |
| res4.4.conv1. | res4_4_branch2a_{bn_,w} | (256,) (256,) (256,) (256,) (256,1024,1,1) |
| res4.4.conv2. | res4_4_branch2b_{bn_,w} | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res4.4.conv3. | res4_4_branch2c_{bn_,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1) |
| res4.5.conv1. | res4_5_branch2a_{bn_,w} | (256,) (256,) (256,) (256,) (256,1024,1,1) |
| res4.5.conv2. | res4_5_branch2b_{bn_,w} | (256,) (256,) (256,) (256,) (256,256,3,3) |
| res4.5.conv3. | res4_5_branch2c_{bn_,w} | (1024,) (1024,) (1024,) (1024,) (1024,256,1,1) |
| res5.0.conv1. | res5_0_branch2a_{bn_,w} | (512,) (512,) (512,) (512,) (512,1024,1,1) |
| res5.0.conv2. | res5_0_branch2b_{bn_,w} | (512,) (512,) (512,) (512,) (512,512,3,3) |
| res5.0.conv3. | res5_0_branch2c_{bn_,w} | (2048,) (2048,) (2048,) (2048,) (2048,512,1,1) |
| res5.0.shortcut. | res5_0_branch1_{bn_,w} | (2048,) (2048,) (2048,) (2048,) (2048,1024,1,1) |
| res5.1.conv1. | res5_1_branch2a_{bn_,w} | (512,) (512,) (512,) (512,) (512,2048,1,1) |
| res5.1.conv2. | res5_1_branch2b_{bn_,w} | (512,) (512,) (512,) (512,) (512,512,3,3) |
| res5.1.conv3. | res5_1_branch2c_{bn_,w} | (2048,) (2048,) (2048,) (2048,) (2048,512,1,1) |
| res5.2.conv1. | res5_2_branch2a_{bn_,w} | (512,) (512,) (512,) (512,) (512,2048,1,1) |
| res5.2.conv2. | res5_2_branch2b_{bn_,w} | (512,) (512,) (512,) (512,) (512,512,3,3) |
| res5.2.conv3. | res5_2_branch2c_{bn_,w} | (2048,) (2048,) (2048,) (2048,) (2048,512,1,1) |
| stem.conv1.norm. | res_conv1_bn_* | (64,) (64,) (64,) (64,) |
| stem.conv1.weight | conv1_w | (64, 3, 7, 7) |
WARNING [05/09 02:15:04 fvcore.common.checkpoint]: Some model parameters or buffers are not found in the checkpoint:
backbone.bottom_up.res3.0.conv2_offset.{bias, weight}
backbone.bottom_up.res3.1.conv2_offset.{bias, weight}
backbone.bottom_up.res3.2.conv2_offset.{bias, weight}
backbone.bottom_up.res3.3.conv2_offset.{bias, weight}
backbone.bottom_up.res4.0.conv2_offset.{bias, weight}
backbone.bottom_up.res4.1.conv2_offset.{bias, weight}
backbone.bottom_up.res4.2.conv2_offset.{bias, weight}
backbone.bottom_up.res4.3.conv2_offset.{bias, weight}
backbone.bottom_up.res4.4.conv2_offset.{bias, weight}
backbone.bottom_up.res4.5.conv2_offset.{bias, weight}
backbone.bottom_up.res5.0.conv2_offset.{bias, weight}
backbone.bottom_up.res5.1.conv2_offset.{bias, weight}
backbone.bottom_up.res5.2.conv2_offset.{bias, weight}
backbone.fpn_lateral2.{bias, weight}
backbone.fpn_lateral3.{bias, weight}
backbone.fpn_lateral4.{bias, weight}
backbone.fpn_lateral5.{bias, weight}
backbone.fpn_output2.{bias, weight}
backbone.fpn_output3.{bias, weight}
backbone.fpn_output4.{bias, weight}
backbone.fpn_output5.{bias, weight}
proposal_generator.rpn_head.anchor_deltas.{bias, weight}
proposal_generator.rpn_head.conv.{bias, weight}
proposal_generator.rpn_head.objectness_logits.{bias, weight}
roi_heads.att_head.dim_layer.{bias, weight}
roi_heads.att_head.fc1.{bias, weight}
roi_heads.att_head.fc2.{bias, weight}
roi_heads.att_head.kpt_layer.{bias, weight}
roi_heads.att_head.yaw_layer.{bias, weight}
roi_heads.box_head.fc1.{bias, weight}
roi_heads.box_head.fc2.{bias, weight}
roi_heads.box_predictor.bbox_pred.{bias, weight}
roi_heads.box_predictor.cls_score.{bias, weight}
roi_heads.dis_head.H_layer.{bias, weight}
roi_heads.dis_head.fc1.{bias, weight}
roi_heads.dis_head.fc2.{bias, weight}
roi_heads.dis_head.hrec_layer.{bias, weight}
WARNING [05/09 02:15:04 fvcore.common.checkpoint]: The checkpoint state_dict contains keys that are not used by the model:
fc1000.{bias, weight}
stem.conv1.bias
[05/09 02:15:04 d2.MonoDet]: Loaded 3769 images in COCO format from ../KITTI/val1/KITTI_val1_val.json