[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Overview

Ok Mugle! 🎵

장르부터 멜로디까지, Content-based Music Recommendation

발표 ppt(1차)_1

Description 📖

  • 본 프로젝트에서는 Kakao Arena에서 제공하는 Melon Playlist Continuation 데이터를 활용하여, 사용자가 검색한 노래와 유사한 노래 추천을 구현하였습니다.

발표 ppt(1차)_8

  1. [Model] '유사성'의 기준을 멜로디, 분위기, 상황, 장르 등으로 정의
    • 해당 요소 반영하여 Music2Vec, Time Convolutional AutoEncoder, ConsineEmbeddingLoss Multimodal 등의 모델 Building
  2. [Retrieval] Embedding의 Cosine Similarity를 구하여 Retrieval 구성
  3. [Ranking] 다양한 Ranking Method 사용 → 추천 결과 Ensemble
  4. [Serving] 최종적으로 Score Total Top 10 Ranking Method의 추천 결과 활용하여 Web 구현 & 모델 Serving

Usage ✔️

  • Windows Shell에 아래 명령을 입력하여 실행합니다.
set FLASK_APP=server
set FLASK_ENV=development
flask run

Result (Web) 💻

웹 메인

  • 검색창에 '비투비 - 비밀 (Insane) (Acoustic Ver.)'를 검색한 결과 화면

웹 검색결과

Presentation 🙋

컨퍼런스 발표영상과 보고서입니다. 자세한 분석 내용은 아래 링크를 통해 확인해주세요!

  • GoogleDrive Badge
  • Youtube Badge

Contributor 🧑‍🤝‍🧑

기수 이름
15기 이성범
16기 김권호
16기 박한나
16기 이승주
16기 이예림
16기 주지훈
7기 이광록(멘토)

File Directory 📂

Ok Mugle!
├── 1. preprocessig
│   ├── make_song_meta_and_playlist.ipynb       # 노래, 플레이리스트 데이터 전처리
│   ├── make_mel_data.ipynb                     # 멜 데이터 전처리
│   └── make_mel_batch_data.ipynb               # 멜 데이터 배치 단위로 전처리
│
├── 2. model
│   ├── genre_embedding_model.ipynb             # Music2Vec
│   ├── mel_embedding_model.ipynb               # Time Convolutional Autoencoder
│   └── genre_and_mel_embedding_model.ipynb     # CosineEmbeddingLoss Multimodal
│
├── 3. embedding-visualization
│   └── embedding_visualization_tsne.ipynb      # t-SNE를 활용한 각 임베딩별 시각화
│
├── 4. ranking
│   ├── make_ranking_data_preprocessig.ipynb    # 각 임베딩별 코사인 유사도 Top50 데이터 셋 제작 
│   ├── make_ranking_data_multiprocessig.py     # make_ranking_data_preprocessig의 multiprocessig을 위한 함수
│   ├── make_ranking_data.ipynb                 # 순위별 가중치 ranking, 각 임베딩 별 상위 Top3 ranking
│   └── cos_sim_music_serving.ipynb             # 각 임베딩, ranking 별 결과
│
└── 5. web
    ├── crawling                                # 결과창 구현을 위한 데이터 수집
    │   └── melon_crawling.py 
    │ 
    ├── data                                    # 웹 제작에 활용된 데이터
    │    ├── ranking_song_id2playlist.json
    │    ├── song_id2artist_name_basket.json
    │    ├── song_id2song_name.json
    │    └── song_name_artist_name2song_id.json
    │ 
    ├── static                                  # 웹 제작에 활용된 css, font, image, js
    │    ├── css
    │    ├── fonts
    │    ├── images
    │    └── js
    │ 
    ├── templates                               # 프론트 구현
    │    ├── about.html
    │    ├── index.html
    │    ├── people.html
    │    └── result.html
    │ 
    └── server.py                               # 백엔드 구현
    │
    └── requirements.txt                        # 필요 패키지 목록
      
You might also like...
[SIGIR22] Official PyTorch implementation for
[SIGIR22] Official PyTorch implementation for "CORE: Simple and Effective Session-based Recommendation within Consistent Representation Space".

CORE This is the official PyTorch implementation for the paper: Yupeng Hou, Binbin Hu, Zhiqiang Zhang, Wayne Xin Zhao. CORE: Simple and Effective Sess

Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

 Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

This script runs neural style transfer against the provided content image.
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Dungeons and Dragons randomized content generator
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

Owner
SeongBeomLEE
안녕하세요.👋 같이에 가치를 아는 머신러닝 엔지니어 이성범 입니다!
SeongBeomLEE
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 3, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

null 19 Sep 29, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 9, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

null 730 Jan 9, 2023
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo nDCG@5 nDCG@10 nDCG@15 MF 0.158707

null 73 Oct 17, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

null 9 Nov 22, 2022
Session-based Recommendation, CoHHN, price preferences, interest preferences, Heterogeneous Hypergraph, Co-guided Learning, SIGIR2022

This is our implementation for the paper: Price DOES Matter! Modeling Price and Interest Preferences in Session-based Recommendation Xiaokun Zhang, Bo

Xiaokun Zhang 27 Dec 2, 2022