RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

Related tags

Deep Learning RL-GAN
Overview

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN is an official implementation of the paper: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation.

Paper

Shani Gamrian, Yoav Goldberg, "Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation"

@article{DBLP:journals/corr/abs-1806-07377,
  author    = {Shani Gamrian and
               Yoav Goldberg},
  title     = {Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image
               Translation},
  journal   = {CoRR},
  volume    = {abs/1806.07377},
  year      = {2018},
  url       = {http://arxiv.org/abs/1806.07377},
  archivePrefix = {arXiv},
  eprint    = {1806.07377},
  timestamp = {Mon, 13 Aug 2018 16:48:23 +0200},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1806-07377},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Videos:

Breakout

RoadFighter

Installation

  • The code was tested on Ubuntu 16.04 with Python 3.6
  • Install packages by typing the command: pip install -r requirements.txt.
  • For Road Fighter, clone and install the repo: https://github.com/ShaniGam/retro

Getting Started

Breakout Examples

  • Train Breakout from scratch:
python -m breakout_a3c.main --num-processes 32 --variation 'standart'
  • Transfer from standart to diagonals variation and fine-tune the model:
python -m breakout_a3c.main --num-processes 32 --variation diagonals --ft-setting full-ft --test
  • Collect images for UNIT training:
python -m breakout_a3c.main --collect-images --num-collected-imgs 100000 --variation diagonals --num-processes 1
  • Train UNIT:
python -m unit.train --trainer UNIT --config unit/configs/breakout-diagonals.yaml
  • Run Breakout with UNIT:
python -m breakout_a3c.main --variation diagonals --test --ft-setting full-ft --test-gan --gan-dir breakout-diagonals --num-processes 0

Road Fighter Examples

  • Train level 1 of Road Fighter
python -m roadfighter_a2c.main --num-processes 84
  • Collect images for UNIT training:
python -m roadfighter_a2c.main -level 1 --collect-images --num-collected-imgs 100000 --num-processes 1
python -m roadfighter_a2c.main -level 2 --collect-images --num-collected-imgs 100000 --num-processes 1
  • Train UNIT:
python -m unit.train --trainer UNIT --config unit/configs/roadfighter-lvl2.yaml
  • Run Road Fighter with UNIT:
python -m roadfighter_a2c.main --load --level 2 --test-gan --gan-dir roadfighter-lvl2-kl01 --num-processes 1
  • Run Road Fighter with UNIT and Imitation Learning:
python -m roadfighter_a2c.main_imitation --load --gan-dir roadfighter-lvl2-kl01 --gan-imitation-file '00320000' --log-name lvl2.log --super-during-rl --level 2 --det-score 5350

Acknowledgments

The code was written by Shani Gamrian and is based on the repositories: pytorch-a3c, pytorch-a2c, UNIT

TO-DO

  • Add links for pretrained models.
  • Create videos.
You might also like...
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.
gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI Gym toolkit.

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-decoder model and benchmarks the combination under simulated noisy rewards.

Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Official PyTorch implementation of
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

Related resources for our EMNLP 2021 paper Plan-then-Generate: Controlled Data-to-Text Generation via Planning

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Comments
  • Unable to reproduce transfer results

    Unable to reproduce transfer results

    I am trying to use this codebase to reproduce the failure of transfer with vanilla RL algorithms. However, I can not reproduce this phenomenon. It seems that this repo does not contain codes for saving trained models and the training accuracy is always zero on Breakout. I wonder if this is the original code the authors use. Also, I tried to use stable-baselines with wrappers in this repo, however, it seems that vanilla algorithms can successfully transfer to perturbed environments.

    I wonder if there is something I missed since the results are contradictory to the paper.

    opened by MouseHu 1
  • Would it be possible to receive pretrained models for the a3c for breakout and a2c for roadfighter?

    Would it be possible to receive pretrained models for the a3c for breakout and a2c for roadfighter?

    Hi,

    I'm trying to implement the code for the breakout environment, unfortunately it seems to take too long on the computational resources I have access to. Would it be possible to receive the pre-trained models for the RL?

    opened by PeteXC 0
Owner
null
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 1, 2023
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 4, 2023
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

null 55 Nov 14, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search?? and Semantic Similarity tasks.

null 224 Jan 4, 2023
Transfer-Learn is an open-source and well-documented library for Transfer Learning.

Transfer-Learn is an open-source and well-documented library for Transfer Learning. It is based on pure PyTorch with high performance and friendly API. Our code is pythonic, and the design is consistent with torchvision. You can easily develop new algorithms, or readily apply existing algorithms.

THUML @ Tsinghua University 2.2k Jan 3, 2023
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

null 364 Dec 14, 2022