[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Overview

Tube Self-Attention Network (TSA-Net)

This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Quality Assessment (ACM-MM'21 Oral)

[arXiv] [supp] [slides] [poster] [video]

If this repository is helpful to you, please star it. If you find our work useful in your research, please consider citing:

@inproceedings{TSA-Net,
  title={TSA-Net: Tube Self-Attention Network for Action Quality Assessment},
  author={Wang, Shunli and Yang, Dingkang and Zhai, Peng and Chen, Chixiao and Zhang, Lihua},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021},
  pages={4902–4910},
  numpages={9}
}

User Guide

In this repository, we open source the code of TSA-Net on FR-FS dataset. The initialization process is as follows:

# 1.Clone this repository
git clone https://github.com/Shunli-Wang/TSA-Net.git ./TSA-Net
cd ./TSA-Net

# 2.Create conda env
conda create -n TSA-Net python
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

# 3.Download pre-trained model and FRFS dataset. All download links are listed as follow.
# PATH/TO/rgb_i3d_pretrained.pt 
# PATH/TO/FRFS 

# 4.Create data dir
mkdir ./data && cd ./data
mv PATH/TO/rgb_i3d_pretrained.pt ./
ln -s PATH/TO/FRFS ./FRFS

After initialization, please check the data structure:

.
├── data
│   ├── FRFS -> PATH/TO/FRFS
│   └── rgb_i3d_pretrained.pt
├── dataset.py
├── train.py
├── test.py
...

Download links:

Training & Evaluation

We provide the training and testing code of TSA-Net and Plain-Net. The difference between the two is whether the TSA module exists. This option is controlled by --TSA item.

python train.py --gpu 0 --model_path TSA-USDL --TSA
python test.py --gpu 0 --pt_w Exp/TSA-USDL/best.pth --TSA

python train.py --gpu 0 --model_path USDL
python test.py --gpu 0 --pt_w Exp/USDL/best.pth

Acknowledgement

Our code is adapted from MUSDL. We are very grateful for their wonderful implementation. All tracking boxes in our project are generated by SiamMask. We also sincerely thank them for their contributions.

Contact

If you have any questions about our work, please contact [email protected].

You might also like...
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network.

This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Human Action Controller - A human action controller running on different platforms.
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Comments
  • The copyright of Olympic broadcast video

    The copyright of Olympic broadcast video

    Thanks for the great work.

    As far as I know, the Olympic broadcast video is copyrighted, is it legal to use this dataset in my work?

    Could you provide some clarification on copyright?

    Looking forward to your reply.

    opened by Lycan1003 0
  • clarification on tube generation

    clarification on tube generation

    Hi, Regarding the tube generation process in get_mask() in evaluator.py. As far as i can see the actor's bounding boxes are extracted using SiamMask on images of size 640x360 (FRFS) which are then passed to get_mask(). On the other hand the dataloader in get_imgs() first down scales frames to 455x256 followed by a crop of 224x224. From looking at get_mask() i see that lines 21-25 intend to place the actor's bounding box properly on the feature maps (spatially), but i am not certain they will fit spatially because the actors bounding boxes did not adjust to the same downscale and crop process that the frames did. Is this a bug or i perhaps i am misunderstanding something? Thanks

    opened by orikorner 1
Owner
ShunliWang
ShunliWang
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 3, 2023
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python >=3.8.0 Pytorch >=1.7.1 Usage wit

null 7 Oct 13, 2022
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 7, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 5, 2023
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022