RGBD-Net
IEEE Paper | arXiv
Installation
Tested on Ubuntu 16.04 + Pytorch 1.8 + Pytorch Lignting 1.3.5
Install environment:
pip install pytorch-lightning, inplace_abn
pip install imageio, pillow, scikit-image, opencv-python, config-argparse, lpips
DTU dataset
Data download
Download the preprocessed DTU training data and Depth_raw from original MVSNet repo and unzip. We provide a DTU example, please follow with the example's folder structure.
Training model
With depth supervision
python train.py --root_dir dataset_path --num_epochs 32 \
--batch_size 4 --depth_interval 2.65 --n_depths 8 32 48 --interval_ratios 1.0 2.0 4.0 \
--optimizer adam --lr 1e-3 --lr_scheduler cosine --num_gpus 4 --loss_type sup --exp_name sup \
--ckpt_dir ./ckpts --log_dir ./logs
Without depth supervision
python train.py --root_dir dataset_path --num_epochs 32 \
--batch_size 4 --depth_interval 2.65 --n_depths 8 32 48 --interval_ratios 1.0 2.0 4.0 \
--optimizer adam --lr 1e-3 --lr_scheduler cosine --num_gpus 4 --loss_type unsup --exp_name unsup \
--ckpt_dir ./ckpts --log_dir ./logs
Testing model
Please change the weight path in test.py to your trained model and execute python test.py
python test.py --root_dir dataset_path
Citation
If you find our code or paper helps, please consider citing:
@inproceedings{nguyen2021rgbd,
title={RGBD-Net: Predicting color and depth images for novel views synthesis},
author={Nguyen-Ha, Phong and Karnewar, Animesh and Huynh, Lam and Rahtu, Esa and Heikkila, Janne},
booktitle={Proceedings of the International Conference on 3D Vision},
year={2021}
}
Big thanks to CasMVSNet_pl, our code is partially borrowing from them.