RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

Overview

RGBD-Net

IEEE Paper | arXiv

This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper. We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator network. The former one predicts depth maps of the target views by using adaptive depth scaling, while the latter one leverages the predicted depths and renders spatially and temporally consistent target images.


Pipeline

Installation

Tested on Ubuntu 16.04 + Pytorch 1.8 + Pytorch Lignting 1.3.5

Install environment:

pip install pytorch-lightning, inplace_abn
pip install imageio, pillow, scikit-image, opencv-python, config-argparse, lpips

DTU dataset

Data download

Download the preprocessed DTU training data and Depth_raw from original MVSNet repo and unzip. We provide a DTU example, please follow with the example's folder structure.

Training model

With depth supervision

python train.py --root_dir dataset_path --num_epochs 32 \
                --batch_size 4 --depth_interval 2.65 --n_depths 8 32 48 --interval_ratios 1.0 2.0 4.0 \
                --optimizer adam --lr 1e-3 --lr_scheduler cosine --num_gpus 4 --loss_type sup --exp_name sup \
                --ckpt_dir ./ckpts --log_dir ./logs

Without depth supervision

python train.py --root_dir dataset_path --num_epochs 32 \
                --batch_size 4 --depth_interval 2.65 --n_depths 8 32 48 --interval_ratios 1.0 2.0 4.0 \
                --optimizer adam --lr 1e-3 --lr_scheduler cosine --num_gpus 4 --loss_type unsup --exp_name unsup \
                --ckpt_dir ./ckpts --log_dir ./logs

Testing model

Please change the weight path in test.py to your trained model and execute python test.py

python test.py --root_dir dataset_path

Citation

If you find our code or paper helps, please consider citing:

@inproceedings{nguyen2021rgbd,
  title={RGBD-Net: Predicting color and depth images for novel views synthesis},
  author={Nguyen-Ha, Phong and Karnewar, Animesh and Huynh, Lam and Rahtu, Esa and Heikkila, Janne},
  booktitle={Proceedings of the International Conference on 3D Vision},
  year={2021}
}

Big thanks to CasMVSNet_pl, our code is partially borrowing from them.

You might also like...
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

This repository contains a re-implementation of the code for the CVPR 2021 paper
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

This repository contains the code for the CVPR 2021 paper
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Comments
  • About ConvLSTM cell

    About ConvLSTM cell

    Your idea of Spatial-temporal consistency is very interesting! But I didn't make it to find how it is implemented in code level (like encoder-ConvLSTM-decoder). Please I Really need you to advise the certain file >.< Many thanks!!

    opened by faye33 2
  • Question about proj_mat

    Question about proj_mat

    Hi,

    Thank you for your reply for my last question! I am reading the code recently and I am a little confused about the project matrix: proj_mats += [proj_mat_ls @ ref_proj_inv] proj_mats_ref2inputs += [ref_proj @ torch.inverse(proj_mat_ls)] Why proj_mats_ref2inputs += [ref_proj @ torch.inverse(proj_mat_ls)] instead of proj_mats_ref2inputs += [proj_mat_ls @ ref_proj_inv]? Because I think the projection equation is: ref_depth*ref_pixel = intrinsics*ref_pose*threeD_point
    src_depth*src_pixel = intrinsics*src_pose*threeD_point so it is:(ref_depth/src_depth)*src_proj*inv(ref_proj)*ref_pixel = src_pixel. Sorry for my stupid question, I shall be very appreciate if you can give me some hint about where I am wrong. Thank you!

    opened by Gilgamesh666666 1
  • About dtu_novelViews/test.txt

    About dtu_novelViews/test.txt

    Hi,

    Thank you for the share your excellent work! I want to test the model trained by myself, but I find there does not exist the file ./datasets/lists/dtu_novelViews/test.txt. Is it actually ./datasets/lists/dtu/test.txt?

    Best regards

    opened by Gilgamesh666666 1
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

MIC-DKFZ 1.2k Jan 4, 2023
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

null 24 Jun 22, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction

H3DS Dataset This repository contains the code for using the H3DS dataset introduced in H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction Access

Crisalix 72 Dec 10, 2022