Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Overview

Shapeland Simulator

License

  • This source code is licensed under the Creative Commons 4.0 International License
  • See the file named LICENSE for details

Tools You Will Need to Run The Simulation

The simulation is written in Python and has been tested with python 3.6.9. Download the latest version of python here: https://www.python.org/downloads/

The code also uses Jupyter Notebooks, available here: https://jupyter.org/install

Installation and Setup

Clone this repository to your local machine:

$ git clone https://github.com/TouringPlans/shapeland.git

Inside the repository is a directory called "Code". Start Jupyter Notebook like this and you'll see the entire notebook that runs the simulator and prints results:

$ jupyter notebook amusement_park_sim.ipynb

Code Organization

There are 5 main classes in this simulation:

  • activity.py: An activity is something an agent can do inside the park. Activities include going on rides, eating, and so on.

  • agent.py: Simulates one guest making decisions in the park.

  • attraction.py: Encapsulates all of the calculations to simulate an attraction, including whether it has FASTPASS, its hourly capacity, how that capacity is split among different lines, and so on.

  • behavior_reference.py: Each Agent has a behavioral archetype. -- Ride Enthusiast: wants to stay for a long time, go on as many attractions as possible, doesn't want to visit activites, doesn't mind waiting -- Ride Favorer: wants to go on a lot of attractions, but will vists activites occasionally, will wait for a while in a queue -- Park Tourer: wants to stay for a long time and wants to see attractions and activities equally, reasonable about wait times -- Park Visitor: doesn't want to stay long and wants to see attractions and activities equally, inpatient about wait times -- Activity Favorer: doesn't want to stay long and prefers activities, reasonable about wait times -- Activity Enthusiast: wants to visit a lot of activities, reasonable about wait times -- Archetypes can be tweaked and new archetypes can be added in behavior_reference.py.

  • park.py: The park contains Agents, Attractions and Activities. -- Total Daily Agents: dictates how many agents visit the park within a day -- Hourly Percent: dictates what percentage of Total Daily Agents visits the park at each hour -- Perfect Arrivals: enforces that the exact amount of Total Daily Agents arrives during the day -- Expedited Pass Ability Percent: percent of agents aware of expeditied passes -- Expedited Threshold: acceptable queue wait time length before searching for an expedited pass -- Expedited Limit: total number of expedited pass an agent can hold at any given time

You might also like...
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

[CVPR 2022] Official PyTorch Implementation for
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Fake videos detection by tracing the source using video hashing retrieval.
Fake videos detection by tracing the source using video hashing retrieval.

Vision Transformer Based Video Hashing Retrieval for Tracing the Source of Fake Videos 🎉️ 📜 Directory Introduction VTL Trace Samples and Acc of Hash

Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

Owner
TouringPlans.com
TouringPlans.com
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

null 1 Jan 23, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video ?? | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
[AAAI2021] The source code for our paper 《Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion》.

DSM The source code for paper Enhancing Unsupervised Video Representation Learning by Decoupling the Scene and the Motion Project Website; Datasets li

Jinpeng Wang 114 Oct 16, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 1, 2023
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022