[ICASSP] Graph Convolution for Re-ranking in Person Re-identification
The official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID.
Environment
We use python 3.7/torch 1.6/torchvision 0.7.0.
Extracted features
We provide Market1501/MARS features from reid-strong-baseline at Google Drive.
Command Lines
Run GCRV rerank with basic settings on Market1501
python eval_rerank.py --config_file=config/market.yml
Run PVG only
python eval_rerank.py --config_file=config/market.yml PVG.ENABLE_PVG True GCR.ENABLE_GCR False
Run GCR only
python eval_rerank.py --config_file=config/market.yml PVG.ENABLE_PVG False GCR.ENABLE_GCR True
RUN GCRV on video reid dataset(MARS)
python eval_rerank.py --config_file=config/mars.yml
Run other rerank methods: (baseline, k_reciprocal, ecn, ecn_orig, lbr, qe)
python eval_rerank.py --config_file=config/market.yml COMMON.RERANK_TYPE baseline
Thanks
State-of-the-art reranking method inlucidng K_reciprocal, ECN, LBR
Citation
If you find our work useful in your research, please consider citing:
@inproceedings{zhang2022graph,
title={Graph Convolution for Re-ranking in Person Re-identification},
author={Zhang, Yuqi and Qian Qi and Liu Chong and Chen, Weihua and Wang Fan and Li Hao and Jin Rong},
journal={arXiv preprint arXiv:2107.02220},
year={2022}
}