This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

Overview

OpenVINO Inference API

This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

Models in Intermediate Representation(IR) format, converted using the Intel® OpenVINO™ toolkit v2021.1, can be deployed in this API. Currently, OpenVINO supports conversion for Models trained in several Machine Learning frameworks including Caffe, Tensorflow etc. Please refer to the OpenVINO documentation for further details on converting your Model.

load model

Prerequisites

  • OS:
    • Ubuntu 18.04
    • Windows 10 pro/enterprise
  • Docker

Check for prerequisites

To check if you have docker-ce installed:

docker --version

Install prerequisites

Ubuntu

Use the following command to install docker on Ubuntu:

chmod +x install_prerequisites.sh && source install_prerequisites.sh

Windows 10

To install Docker on Windows, please follow the link.

P.S: For Windows users, open the Docker Desktop menu by clicking the Docker Icon in the Notifications area. Select Settings, and then Advanced tab to adjust the resources available to Docker Engine.

Build The Docker Image

In order to build the project run the following command from the project's root directory:

sudo docker build -t openvino_inference_api .

Behind a proxy

sudo docker build --build-arg http_proxy='' --build-arg https_proxy='' -t openvino_inference_api .

Run The Docker Container

If you wish to deploy this API using docker, please issue the following run command.

To run the API, go the to the API's directory and run the following:

Using Linux based docker:

sudo docker run -itv $(pwd)/models:/models -v $(pwd)/models_hash:/models_hash -p <docker_host_port>:80 openvino_inference_api

Using Windows based docker:

docker run -itv ${PWD}\models:/models -v ${PWD}\models_hash:/models_hash -p <docker_host_port>:80 openvino_inference_api

The <docker_host_port> can be any unique port of your choice.

The API file will be run automatically, and the service will listen to http requests on the chosen port.

API Endpoints

To see all available endpoints, open your favorite browser and navigate to:

http://<machine_IP>:<docker_host_port>/docs

Endpoints summary

/load (GET)

Loads all available models and returns every model with it's hashed value. Loaded models are stored and aren't loaded again.

load model

/detect (POST)

Performs inference on an image using the specified model and returns the bounding-boxes of the objects in a JSON format.

detect image

/models/{model_name}/predict_image (POST)

Performs inference on an image using the specified model, draws bounding boxes on the image, and returns the resulting image as response.

predict image

P.S: If you are using custom endpoints like /detect, /predict_image, you should always use the /load endpoint first and then use /detect

Model structure

The folder "models" contains subfolders of all the models to be loaded. Inside each subfolder there should be a:

  • bin file (<your_converted_model>.bin): contains the model weights

  • xml file (<your_converted_model>.xml): describes the network topology

  • class file (classes.txt): contains the names of the object classes, which should be in the below format

        class1
        class2
        ...
    
  • config.json (This is a json file containing information about the model)

      {
          "inference_engine_name": "openvino_detection",
          "confidence": 60,
          "predictions": 15,
          "number_of_classes": 2,
          "framework": "openvino",
          "type": "detection",
          "network": "fasterrcnn"
      }

    P.S:

    • You can change confidence and predictions values while running the API
    • The API will return bounding boxes with a confidence higher than the "confidence" value. A high "confidence" can show you only accurate predictions

The "models" folder structure should be similar to as shown below:

│──models
  │──model_1
  │  │──<model_1>.bin
  │  │──<model_1>.xml
  │  │──classes.txt
  │  │──config.json
  │
  │──model_2
  │  │──<model_2>.bin
  │  │──<model_2>.xml
  │  │──classes.txt
  │  │──config.json

Acknowledgements

OpenVINO Toolkit

intel.com

robotron.de

You might also like...
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers how to leverage our APIs for optimized deep learning inference in their applications.

Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.
Torchserve server using a YoloV5 model running on docker with GPU and static batch inference to perform production ready inference.

Yolov5 running on TorchServe (GPU compatible) ! This is a dockerfile to run TorchServe for Yolo v5 object detection model. (TorchServe (PyTorch librar

This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

MoveNet Single Pose on OpenVINO
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

Running Google MoveNet Multipose Tracking models on OpenVINO.
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of given options.

Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

Owner
BMW TechOffice MUNICH
This organization contains software for realtime computer vision published by the members, partners and friends of the BMW TechOffice MUNICH and InnovationLab.
BMW TechOffice MUNICH
Monocular 3D pose estimation. OpenVINO. CPU inference or iGPU (OpenCL) inference.

human-pose-estimation-3d-python-cpp RealSenseD435 (RGB) 480x640 + CPU Corei9 45 FPS (Depth is not used) 1. Run 1-1. RealSenseD435 (RGB) 480x640 + CPU

Katsuya Hyodo 8 Oct 3, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our report on Arxiv.

null 7.7k Jan 6, 2023
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

null 7.7k Jan 3, 2023
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 9, 2023
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 6, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
Facial detection, landmark tracking and expression transfer library for Windows, Linux and Mac

Welcome to the CSIRO Face Analysis SDK. Documentation for the SDK can be found in doc/documentation.html. All code in this SDK is provided according t

Luiz Carlos Vieira 7 Jul 16, 2020