Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Related tags

Deep Learning PTNet
Overview

Pyramid Transformer Net (PTNet)

Project | Paper

Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis.

PTNet: A High-Resolution Infant MRI Synthesizer Based on Transformer
Xuzhe Zhang1, Xinzi He1, Jia Guo2, Nabil Ettehadi1, Natalie Aw2, David Semanek2, Jonathan Posner2, Andrew Laine1, Yun Wang2
1Columbia University Department of Biomedical Engineering, 2CUMC Department of Psychiatry

Usage and Demo

Coming Soon

Prerequisites

  • Linux
  • Python3.6
  • NVIDIA GPU (11G memory or larger) + CUDA cuDNN

Getting Started

Installation

coming soon

Testing

coming soon

Dataset

coming soon

Training

coming soon

More Training/Test Details

coming soon

Citation

If you find this useful for your research, please use the following.

@article{zhang2021ptnet,
  title={PTNet: A High-Resolution Infant MRI Synthesizer Based on Transformer},
  author={Zhang, Xuzhe and He, Xinzi and Guo, Jia and Ettehadi, Nabil and Aw, Natalie and Semanek, David and Posner, Jonathan and Laine, Andrew and Wang, Yun},
  journal={arXiv preprint arXiv:2105.13993},
  year={2021}
}

Acknowledgments

This code borrows heavily from: Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, pix2pixHD, pytorch-CycleGAN-and-pix2pix.

You might also like...
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

A framework for joint super-resolution and image synthesis, without requiring real training data
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

Official and maintained implementation of the paper
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

The project is an official implementation of our CVPR2019 paper
The project is an official implementation of our CVPR2019 paper "Deep High-Resolution Representation Learning for Human Pose Estimation"

Deep High-Resolution Representation Learning for Human Pose Estimation (CVPR 2019) News [2020/07/05] A very nice blog from Towards Data Science introd

This is an official implementation of the High-Resolution Transformer for Dense Prediction.
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

Comments
  • how to organize dataset?

    how to organize dataset?

    hi, i'm trying to train the model using BRATS and iSeg.

    can you give a brief explanation how to organize the dataset?

    i tried Dataset/BRATS/ train_A/ .._t1.nii.gz (files) train_B/ .._t2.nii.gz (files)

    where each nii.gz files are sizes of 240x240x155

    but got the error RuntimeError: Given normalized_shape=[49], expected input with shape [*, 49], but got input of size[1, 9240, 11760]

    thanks!

    opened by jiyoonshincml 1
Owner
Xuzhe Johnny Zhang
image processing; CV; deep learning; computer-assisted medical image diagnosis/interpretation
Xuzhe Johnny Zhang
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 4, 2023
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 2, 2023
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 2, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

null 2 Nov 15, 2021
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 2, 2023
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 1, 2023
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 4, 2023
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 6, 2023
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 54 Aug 30, 2021