PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Overview

Future urban scene generation through vehicle synthesis

This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Through Vehicle Synthesis" [arXiv]

Model architecture

Our framework is composed by two stages:

  1. Interpretable information extraction: high level interpretable information is gathered from raw RGB frames (bounding boxes, trajectories, keypoints).
  2. Novel view completion: condition a reprojected 3D model with the original 2D appearance.

Multi stage pipeline

Abstract

In this work we propose a deep learning pipeline to predict the visual future appearance of an urban scene. Despite recent advances, generating the entire scene in an end-to-end fashion is still far from being achieved. Instead, here we follow a two stage approach, where interpretable information are included in the loop and each actor is modelled independently. We leverage a per-object novel view synthesis paradigm; i.e. generating a synthetic representation of an object undergoing a geometrical roto-translation in the 3D space. Our model can be easily conditioned with constraints (e.g. input trajectories) provided by state-of-the-art tracking methods or by the user.

Sequence result example


Code

Code was tested with an Anaconda environment (Python version 3.6) on both Linux and Windows based systems.

Install

Run the following commands to install all requirements in a new virtual environment:

conda create -n <env_name> python=3.6
conda activate <env_name>
pip install -r requirements.txt

Install PyTorch package (version 1.3 or above).

How to run test

To run the demo of our project, please firstly download all the required data at this link and save them in a of your choice. We tested our pipeline on the Cityflow dataset that already have annotated bounding boxes and trajectories of vehicles.

The test script is run_test.py that expects some arguments as mandatory: video, 3D keypoints and checkpoints directories.

python run_test.py <data_dir>/<video_dir> <data_dir>/pascal_cads <data_dir>/checkpoints --det_mode ssd512|yolo3|mask_rcnn --track_mode tc|deepsort|moana --bbox_scale 1.15 --device cpu|cuda

Add the parameter --inpaint to use the inpainting on the vehicle instead of the static background.

Description and GUI usage

If everything went well, you should see the main GUI in which you can choose whichever vehicle you want that was detected in the video frame or change the video frame.

GUI window

The commands working on this window are:

  1. RIGHT ARROW = go to next frame
  2. LEFT ARROW = go to previous frame
  3. SINGLE MOUSE LEFT BUTTON CLICK = visualize car trajectory
  4. BACKSPACE = delete the drawn trajectories
  5. DOUBLE MOUSE LEFT BUTTON CLICK = select one of the vehicles bounding boxes

Once you selected some vehicles of your chioce by double-clicking in their bounding boxes, you can push the RUN button to start the inference. The resulting frames will be saved in ./results directory.

Cite

If you find this repository useful for your research, please cite the following paper:

@inproceedings{simoni2021future,
  title={Future urban scenes generation through vehicles synthesis},
  author={Simoni, Alessandro and Bergamini, Luca and Palazzi, Andrea and Calderara, Simone and Cucchiara, Rita},
  booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
  pages={4552--4559},
  year={2021},
  organization={IEEE}
}
You might also like...
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Code reproduce for paper
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

Official project website for the CVPR 2021 paper
Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation"

EgoNet Official project website for the CVPR 2021 paper "Exploring intermediate representation for monocular vehicle pose estimation". This repo inclu

This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Official code for
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Comments
  • Bump bleach from 3.1.0 to 3.1.4

    Bump bleach from 3.1.0 to 3.1.4

    Bumps bleach from 3.1.0 to 3.1.4.

    Changelog

    Sourced from bleach's changelog.

    Version 3.1.4 (March 24th, 2020)

    Security fixes

    • bleach.clean behavior parsing style attributes could result in a regular expression denial of service (ReDoS).

      Calls to bleach.clean with an allowed tag with an allowed style attribute were vulnerable to ReDoS. For example, bleach.clean(..., attributes={'a': ['style']}).

      This issue was confirmed in Bleach versions v3.1.3, v3.1.2, v3.1.1, v3.1.0, v3.0.0, v2.1.4, and v2.1.3. Earlier versions used a similar regular expression and should be considered vulnerable too.

      Anyone using Bleach <=v3.1.3 is encouraged to upgrade.

      https://bugzilla.mozilla.org/show_bug.cgi?id=1623633

    Backwards incompatible changes

    • Style attributes with dashes, or single or double quoted values are cleaned instead of passed through.

    Features

    None

    Bug fixes

    None

    Version 3.1.3 (March 17th, 2020)

    Security fixes

    None

    Backwards incompatible changes

    None

    Features

    • Add relative link to code of conduct. (#442)

    • Drop deprecated 'setup.py test' support. (#507)

    ... (truncated)
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
Owner
Alessandro Simoni
PhD Student @ University of Modena and Reggio Emilia (@aimagelab)
Alessandro Simoni
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu1*  Shangzhan Zhang1*  Tianrun Chen1  Yichong Lu1  Lanyun Zhu2  Xi

Xiao Fu 37 May 17, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Source code for the GPT-2 story generation models in the EMNLP 2020 paper "STORIUM: A Dataset and Evaluation Platform for Human-in-the-Loop Story Generation"

Storium GPT-2 Models This is the official repository for the GPT-2 models described in the EMNLP 2020 paper [STORIUM: A Dataset and Evaluation Platfor

Nader Akoury 27 Dec 20, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 4, 2023
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022