This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

Overview

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition

Framework Architecture

Image

Requirements

  • Pytorch==1.0.1 or higher
  • opencv version: 4.1.0

Datasets

  • XMU:
    • Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, Vehicle logo recog775 nition system based on convolutional neural networks with a pretraining strategy, IEEE Transactions on Intelligent Transportation Systems 16 (4) (2015) 1951-1960.
    • https://xmu-smartdsp.github.io/VehicleLogoRecognition.html
  • HFUT-VL1 and HFUT-VL2:
    • Y. Yu, J. Wang, J. Lu, Y. Xie, and Z. Nie, Vehicle logo recognition based on overlapping enhanced patterns of oriented edge magnitudes, Computers & Electrical Engineering 71 (2018) 273–283.
    • https://github.com/HFUT-VL/HFUT-VL-dataset
  • CompCars:
    • L. Yang, P. Luo, C. C. Loy, and X. Tang, A large-scale car dataset for fine-grained categorization and verification, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 3973-3981.
    • http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
  • VLD-45:

VLF-net for classification (Vehicle logo feature extraction network)

  • Training with the classification pipeline

    • training XMU dataset
    python train.py --dataset_name XMU --framework Classification_Network
    
    • training HFUT-VL1 dataset
    python train.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • training HFUT-VL2 dataset
    python train.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • training CompCars dataset
    python train.py --dataset_name CompCars --framework Classification_Network
    
    • training VLD-45 dataset
    python train.py --dataset_name VLD-45 --framework Classification_Network
    
  • Testing with the classification pipeline

    • testing XMU dataset
    python test.py --dataset_name XMU --framework Classification_Network
    
    • testing HFUT-VL1 dataset
    python test.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • testing HFUT-VL2 dataset
    python test.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • testing CompCars dataset
    python test.py --dataset_name CompCars --framework Classification_Network
    
    • testing VLD-45 dataset
    python test.py --dataset_name VLD-45 --framework Classification_Network
    

VLF-net for category-consistent mask learning

  • Step 1:

    • Generation of the category-consistent masks. There are more details for the co-localization method PSOL.
    • Please note that we use the generated binary-masks directly instead of the predicted boxes.
  • Step 2:

    • After generating the category-consistent masks, we can further organize the training and testing data which are as below:
    root/
          test/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          train/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          mask/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
    
    Note that each image has the corresponding generated category-consistent mask.
  • Step 3:

    • Now, you can training the model with the category-consistent mask learning framework

    • Training with the category-consistent deep network learning framework pipeline

      • training XMU dataset
      python train.py --dataset_name XMU --framework CCML_Network
      
      • training HFUT-VL1 dataset
      python train.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • training HFUT-VL2 dataset
      python train.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • training CompCars dataset
      python train.py --dataset_name CompCars --framework CCML_Network
      
      • training VLD-45 dataset
      python train.py --dataset_name VLD-45 --framework CCML_Network
      
    • Testing with the category-consistent deep network learning framework pipeline

      • testing XMU dataset
      python test.py --dataset_name XMU --framework CCML_Network
      
      • testing HFUT-VL1 dataset
      python test.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • testing HFUT-VL2 dataset
      python test.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • testing CompCars dataset
      python test.py --dataset_name CompCars --framework CCML_Network
      
      • testing VLD-45 dataset
      python test.py --dataset_name VLD-45 --framework CCML_Network
      

Experiments

Image

Image

Bibtex

  • If you find our code useful, please cite our paper:
    @article{LU2021,
    title = {Category-consistent deep network learning for accurate vehicle logo recognition},
      journal = {Neurocomputing},
      year = {2021},
      issn = {0925-2312},
      doi = {https://doi.org/10.1016/j.neucom.2021.08.030},
      url = {https://www.sciencedirect.com/science/article/pii/S0925231221012145},
      author = {Wanglong Lu and Hanli Zhao and Qi He and Hui Huang and Xiaogang Jin}
      }
    

Acknowledgements

You might also like...
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Code reproduce for paper
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

A lightweight deep network for fast and accurate optical flow estimation.
A lightweight deep network for fast and accurate optical flow estimation.

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation The official PyTorch implementation of FastFlowNet (ICRA 2021). Authors: Lingtong

data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Official Repository for the ICCV 2021 paper
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Owner
Wanglong Lu
I am a Ph.D. student at Ubiquitous Computing and Machine Learning Research Lab (UCML), Memorial University of Newfoundland.
Wanglong Lu
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

null 9 Nov 22, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

null 9 Dec 9, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not contain USPS.

Stephen Stratoti 9 Dec 27, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 8, 2022
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

null 37 Nov 21, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video ?? Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 5, 2023