Benchmark tools for Compressive LiDAR-to-map registration

Overview

Benchmark tools for Compressive LiDAR-to-map registration

This repo contains the released version of code and datasets used for our IROS 2021 paper: "Map Compressibility Assessment for LiDAR Registration [link]. If you find the code useful for your work, please cite:

@inproceedings{Chang21iros,
   author = {M.-F. Chang and W. Dong and J.G. Mangelson and M. Kaess and S. Lucey},
   title = {Map Compressibility Assessment for {LiDAR} Registration},
   booktitle = {Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots andSystems, IROS},
   address = {Prague, Czech Republic},
   month = sep,
   year = {2021}
}

Environment Setup

The released codebase supports following methods:

  1. Point-to-point ICP (from open3d)
  2. Point-to-plane ICP (from open3d)
  3. FPFH (with RANSAC from open3d or Teaser++)
  4. FCGF (with RANSAC from open3d or Teaser++)
  5. D3Feat (with RANSAC from open3d or Teaser++)

To run Teaser++, please also install from https://github.com/MIT-SPARK/TEASER-plusplus (python bindings required). One can build install the environment with the following conda command:

conda create --name=benchmark  python=3.6  numpy open3d=0.12  tqdm pytorch cpuonly -c pytorch -c open3d-admin -c conda-forge 
conda activate benchmark
pip install pillow==6.0 #for visualization

Datasets

The preprocessed data can be downloaded from [link]. The following data were provided:

  1. Preprocessed KITTI scan/local map pairs
  2. Preprocessed Argoverse Tracking scan/local map pairs
  3. FCGF and D3Feat features
  4. The ground truth poses

We haved preprocessed the results from FCGF and D3Feat into pickle files. The dataset is organized as source-target pairs. The source is the input LiDAR scan and the target is the cropped local map with initial LiDAR pose.

By default, we put the data in ./data folder. Please download the corresponding files from [link] and put/symlink it in ./data. The file structure is as follows:

./data
   ├─ data_Argoverse_Tracking
   │    ├─ test_dict_maps.pickle
   │    ├─ test_list_T_gt.pickle
   │    └─ test_samples.pickle
   │ 
   ├─ data_KITTI
   │    ├─ test_dict_maps.pickle
   │    ├─ test_list_T_gt.pickle
   │    └─ test_samples.pickle
   │ 
   ├─ deep
   │    ├─ d3feat.results.pkl.Argoverse_Tracking
   │    ├─ d3feat.results.pkl.KITTI
   │    ├─ fcgf.results.pkl.Argoverse_Tracking
   │    └─ fcgf.results.pkl.KITTI
----

Usage

To run the code, simply use the following command and specify the config file name.:

python3 run_eval.py --path_cfg=configs.config

For trying out existing methods, first edit config.py to config the method list, the dataset name, and the local dataset path.

For trying out new methods, please add the registration function to tester.py and add the method configuration to method.py and the parameters to method.json.

To visualize the resulting recall curves, please run

python3 make_recall_figure_threshold.py --path_cfg=configs.config

It will generate the recall plot and error density plot in ./output_eval_{dataset_name}. Here is an expected outout:

Acknowledgement

This work was supported by the CMU Argo AI Center for Autonomous Vehicle Research. We also thank our labmates for the valuable suggestions to improve this paper.

References

  1. Teaser++
  2. Open3d
  3. KITTI Odometry Dataset
  4. Argoverse 3D Tracking 1.1
  5. FCGF
  6. D3Feat
You might also like...
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

A robust pointcloud registration pipeline based on correlation.
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

 You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

Owner
Allie
PhD student in Robotics Institute of Carnegie Mellon University
Allie
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects different compression algorithms have.

ImageCompressionSimulation An Image compression simulator that uses Source Extractor and Monte Carlo methods to examine the post compressive effects o

James Park 1 Dec 11, 2021
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW ?? ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 6, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

null 153 Dec 14, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 5, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022