APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

Overview

APEACH - Korean Hate Speech Evaluation Datasets

APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of the dataset are created by anonymous participants using an online crowdsourcing platform DeepNatural AI.

  • Sample Code : base

Download

You can download benchmark set APEACH. APEACH/test.csv in this repository.

Dataset Description

  • APEACH : A hate-speech evaluation dataset generated in 2021, using generation method followd by APEACH paper.

Guidelines

APEACH-GUIDELINE

Topics

Lengths

Paper

Experiment Code

base

Experiment Results

Name Beep! Dev Dataset Apeach (Ours)
SoongsilBERT-Base 0.8261 0.8424
SoongsilBERT-Small 0.8149 0.8228
KcBERT-base 0.8088 0.8086
KcBERT-large 0.8295 0.8116
DistillKoBERT 0.7570 0.7715
KoELECTRA-V3 0.7920 0.8101
KoBERT 0.8030 0.7885

We also share BEST model of our dataset which we trained in this experiment as checkpoint, demo webite and api.

Citation

@article{yang2022apeach,
  title={APEACH: Attacking Pejorative Expressions with Analysis on Crowd-Generated Hate Speech Evaluation Datasets},
  author={Yang, Kichang and Jang, Wonjun and Cho, Won Ik},
  journal={arXiv preprint arXiv:2202.12459},
  year={2022}
}

Contributors

The main contributors of the work ( * : equal contribution) :

License

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

You might also like...
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.
PyTorch implementation of Microsoft's text-to-speech system FastSpeech 2: Fast and High-Quality End-to-End Text to Speech.

An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

A Python module made to simplify the usage of Text To Speech and Speech Recognition.
A Python module made to simplify the usage of Text To Speech and Speech Recognition.

Nav Module The solution for voice related stuff in Python Nav is a Python module which simplifies voice related stuff in Python. Just import the Modul

Code for ACL 2022 main conference paper "STEMM: Self-learning with Speech-text Manifold Mixup for Speech Translation".

STEMM: Self-learning with Speech-Text Manifold Mixup for Speech Translation This is a PyTorch implementation for the ACL 2022 main conference paper ST

 Machine Psychology: Python Generated Art
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Owner
Kevin-Yang
Kevin-Yang
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

null 36 Sep 13, 2022
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
Abhijith Neil Abraham 2 Nov 5, 2021
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.2k Jan 9, 2023
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022