A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

Overview

tfds-korean

A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다.

Dataset Catalog | pypi

PyPI - License PyPI Test Python

Usage

Installation

pip install tfds-korean

Loading dataset

import tensorflow_datasets as tfds
import tfds_korean.nsmc # register nsmc dataset

ds = tfds.load('nsmc')

train_ds = ds['train'].batch(32)
test_ds = ds['test'].batch(128)

# define model
# ....
# ....

model.fit(train_ds)
model.evaluate(test_ds)

See Dataset Catalog page for dataset list and details of each dataset.

Examples

Licenses

The license for this repository and licenses for datasets are applied separately. It is recommended to use each dataset after checking the dataset's website.

본 레포지토리의 라이선스와 데이터셋의 라이선스는 별도로 적용됩니다. 데이터셋을 사용하기 전 각 데이터셋의 라이선스와 웹 사이트를 확인 후 사용하시길 권해드리며, 본 라이브러리는 데이터셋을 호스팅하거나 배포하지 않는 점을 참고부탁드립니다.

Comments
  • [Dataset Request] sae4k

    [Dataset Request] sae4k

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sae4k
    • Dataset description:
    • Homepage: https://github.com/warnikchow/sae4k
    • Citation:

    Additional Context

    dataset request 
    opened by jeongukjae 2
  • [Dataset Request] namuwiki corpus

    [Dataset Request] namuwiki corpus

    Dataset Information

    • Dataset Name: namuwiki corpus
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://github.com/jeongukjae/namuwiki-corpus
    • Citation:
    • License:

    Additional Context

    문장 단위 분절해놓은 나무위키 코퍼스

    dataset request 
    opened by jeongukjae 1
  • [Dataset Request] korean wikipedia corpus

    [Dataset Request] korean wikipedia corpus

    Dataset Information

    • Dataset Name: 한국어 위키피디아 코퍼스
    • Prefered code name(e.g. korean_chatbot_qa_data): korean_wikipedia_corpus
    • Dataset description:
    • Homepage: https://github.com/jeongukjae/korean-wikipedia-corpus
    • Citation:
    • License:

    Additional Context

    kowikitext도 충분히 좋지만, 문장단위로 사용할 때 불편한 점이 있다. 그래서 문장단위로 이미 나누어진 말뭉치를 한국어 위키피디아 덤프에서 하나 생성. (kss로 분절)

    FeaturesDict({
        'content': Sequence(Text(shape=(), dtype=tf.string)),
        'title': Text(shape=(), dtype=tf.string),
    })
    

    요런식으로 content가 TensorSpec(shape=[None], dtype=tf.string)인 텐서값을 가지도록 만들어주면 distillation이나 문장 단위 unsupervised learning이나 할 때 편할 것 같아요.

    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] KLUE

    [Dataset Request] KLUE

    Dataset Information

    • Dataset Name: KLUE
    • Prefered code name(e.g. korean_chatbot_qa_data): klue_dp, klue_mrc, ...
    • Dataset description:
    • Homepage:
    • Citation:
    • License:

    Additional Context

    https://github.com/KLUE-benchmark/KLUE https://arxiv.org/pdf/2105.09680v1.pdf

    • [x] dp @jeongukjae
    • [x] mrc @harrydrippin
    • [x] ner @jeongukjae
    • [x] nli @jeongukjae
    • [x] re @jeongukjae
    • [x] sts @jeongukjae
    • [x] wos @jeongukjae
    • [x] ynat @jeongukjae
    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] namuwikitext

    [Dataset Request] namuwikitext

    Dataset Information

    • Dataset Name: Wikitext format dataset of Namuwiki
    • Prefered code name(e.g. korean_chatbot_qa_data): namuwikitext
    • Dataset description: 나무위키의 덤프 데이터를 바탕을 제작한 wikitext 형식의 텍스트 파일입니다. 학습 및 평가를 위하여 위키페이지 별로 train (99%), dev (0.5%), test (0.5%) 로 나뉘어져있습니다.
    • Homepage: https://github.com/lovit/namuwikitext
    • Citation:

    Additional Context

    https://github.com/lovit/namuwikitext/issues/10

    README에 있는 데이터셋 개수와 맞지 않아 이렇게 이슈 작성을 해놓았는데, 답변은 없는 상황임. 일단 Korpora에 있는 대로 추가해놓고 나중에 다시 수정하는 것이 좋지 않을까

    dataset request 
    opened by jeongukjae 1
  • [Dataset Request] KorQuAD

    [Dataset Request] KorQuAD

    Dataset Information

    • Dataset Name: KorQuAD 1.0
    • Prefered code name(e.g. korean_chatbot_qa_data): korquad_10
    • Dataset description: KorQuAD 1.0은 한국어 Machine Reading Comprehension을 위해 만든 데이터셋입니다. 모든 질의에 대한 답변은 해당 Wikipedia article 문단의 일부 하위 영역으로 이루어집니다. Stanford Question Answering Dataset(SQuAD) v1.0과 동일한 방식으로 구성되었습니다.
    • Homepage: https://korquad.github.io/KorQuad%201.0/
    • Citation:

    Dataset Information

    • Dataset Name: KorQuAD 2.0
    • Prefered code name(e.g. korean_chatbot_qa_data): korquad_20
    • Dataset description: KorQuAD 2.0은 KorQuAD 1.0에서 질문답변 20,000+ 쌍을 포함하여 총 100,000+ 쌍으로 구성된 한국어 Machine Reading Comprehension 데이터셋 입니다. KorQuAD 1.0과는 다르게 1~2 문단이 아닌 Wikipedia article 전체에서 답을 찾아야 합니다. 매우 긴 문서들이 있기 때문에 탐색 시간에 대한 고려가 필요할 것 입니다. 또한 표와 리스트도 포함되어 있기 때문에 HTML tag를 통한 문서의 구조 이해도 필요합니다. 이 데이터셋을 통해서 다양한 형태와 길이의 문서들에서도 기계독해가 가능해질 것 입니다.
    • Homepage: https://korquad.github.io
    • Citation:

    Additional Context

    일단은 KorQuAD 1.0만 추가해놓고 2.0은 추후에 추가해도 무방할 듯

    dataset request before-release 
    opened by jeongukjae 1
  • [Dataset Request] 한국해양대학교 NER 데이터셋

    [Dataset Request] 한국해양대학교 NER 데이터셋

    Dataset Information

    • Dataset Name: 한국해양대학교 자연언어처리 연구실 NER 데이터셋
    • Prefered code name(e.g. korean_chatbot_qa_data): kmounlp_ner
    • Dataset description: 한국어 개체명 정의 및 표지 표준화 기술보고서와 이를 기반으로 제작된 개체명 형태소 말뭉치
    • Homepage: https://github.com/kmounlp/NER
    • Citation:

    Additional Context

    보고서: https://github.com/kmounlp/NER/blob/master/NER%20Guideline%20(ver%201.0).pdf

    dataset request 
    opened by jeongukjae 1
  • Add CONTRIBUTING.md

    Add CONTRIBUTING.md

    • [ ] 프로젝트에서 사용하는 언어에 대한 설명. 사용법/데이터셋 설명은 가능하면 영어로 적되, 이슈/PR 소통은 한국어로 하는게 좋지 않을까?
    • [ ] 데이터셋 추가하는 법
    • [ ] 이슈/PR/Discussion 간단한 설명
    • [ ] 추가로 같이 관리하고 싶은 분들에 대한 설명
    • [ ] 데이터셋 라이선스에 대한 문제에 대한 설명
    documentation before-release 
    opened by jeongukjae 1
  • 현재 wikitext의 문제점을 카탈로그에 적어두기

    현재 wikitext의 문제점을 카탈로그에 적어두기

    https://github.com/jeongukjae/tfds-korean/issues/12#issuecomment-826358469

    위와 같은 이유로 "필터를 해서 사용해라" 혹은 "중간에 빈 example이 있다" 정도는 적어두는 편이 좋은 듯

    documentation 
    opened by jeongukjae 0
  • [Dataset Request] sci-news-sum-kr-50

    [Dataset Request] sci-news-sum-kr-50

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sci_news_sum_kr_50
    • Dataset description:
    • Homepage: https://github.com/theeluwin/sci-news-sum-kr-50
    • Citation:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] kowikitext

    [Dataset Request] kowikitext

    Dataset Information

    • Dataset Name: 한국어 wikitext
    • Prefered code name(e.g. korean_chatbot_qa_data): kowikitext
    • Dataset description: Wikitext format Korean corpus
    • Homepage: https://github.com/lovit/kowikitext
    • Citation:

    Additional Context

    이것도 #12 와 같은 문제점이 존재하는 것으로 보이는데, 일단은 Korpora 방식을 따라감. 이 데이터셋도 heading을 기준으로 split할 경우 = 분류~~~ =같은 행들이 존재하여 정확히 문서 단위로 복구가 불가능함.

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] korean_unsmile_dataset

    [Dataset Request] korean_unsmile_dataset

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://github.com/smilegate-ai/korean_unsmile_dataset
    • Citation:
    • License:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • 데이터셋 카탈로그 빌더 특정 데이터셋 스킵가능하게 수정

    데이터셋 카탈로그 빌더 특정 데이터셋 스킵가능하게 수정

    현재 모든 데이터셋이 로컬에 존재해야 카탈로그를 빌드할 수 있는데, 이게 너무 부담이 된다. 현재 develop 기준만 해도 대략 30GB를 로컬에 들고 있어야 한다.

    데이터셋 버전이 바뀌지 않는다면 카탈로그를 다시 빌드해야하는 때는 build_catalog.py 스크립트가 변경될 때 뿐이라서 특정 데이터셋 페이지 & index 페이지만 빌드해도 되도록 수정해두자. 물론 전체 데이터셋에 대한 카탈로그 빌드도 가능하게 유지.

    documentation 
    opened by jeongukjae 0
  • [Dataset Request] Korean Single Speaker Speech Dataset

    [Dataset Request] Korean Single Speaker Speech Dataset

    Dataset Information

    • Dataset Name: Korean Single Speaker Speech Dataset
    • Prefered code name(e.g. korean_chatbot_qa_data):
    • Dataset description:
    • Homepage: https://www.kaggle.com/bryanpark/korean-single-speaker-speech-dataset
    • Citation:
    • License:

    Additional Context

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] 세종코퍼스

    [Dataset Request] 세종코퍼스

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): sejong_corpus
    • Dataset description:
    • Homepage: https://ithub.korean.go.kr/user/total/database/corpusManager.do
    • Citation:
    • License:

    Additional Context

    세종 코퍼스: https://ithub.korean.go.kr/user/total/database/corpusManager.do 세종 코퍼스 - 병렬: https://ithub.korean.go.kr/user/total/database/etcManager.do

    라이선스가 상업적 이용이 어렵더라도 이용하기에 좋은 말뭉치라 생각해서 일단은 추가하는 게 좋을 것 같아요.

    dataset request 
    opened by jeongukjae 0
  • [Dataset Request] kcbert

    [Dataset Request] kcbert

    Dataset Information

    • Dataset Name:
    • Prefered code name(e.g. korean_chatbot_qa_data): kcbert
    • Dataset description:
    • Homepage: https://github.com/Beomi/KcBERT
    • Citation:

    Additional Context

    이거 추가해두면 엄청 유용하게 쓸 수 있을 것 같다!!

    dataset request 
    opened by jeongukjae 4
  • [Dataset Request] KAIST Corpus

    [Dataset Request] KAIST Corpus

    Dataset Information

    • Dataset Name: kaist corpus
    • Prefered code name(e.g. korean_chatbot_qa_data): kaist_corpus
    • Dataset description:
    • Homepage: http://semanticweb.kaist.ac.kr/home/index.php/KAIST_Corpus
    • Citation:

    Additional Context

    wontfix dataset request 
    opened by jeongukjae 1
Releases(0.4.0)
  • 0.4.0(Sep 19, 2021)

    • Update KLUE dataset to 1.1.0 https://github.com/jeongukjae/tfds-korean/commit/e954ec4550ec5db015d3f93750e6763aca5a9b48
    • Reorder ClassLabel names of NLI datasets. https://github.com/jeongukjae/tfds-korean/commit/be3e8cba7b9d537969b9c08738dd6df36b0145bc
    Source code(tar.gz)
    Source code(zip)
  • 0.3.0(Jun 16, 2021)

    • add korean_wikipedia_corpus (https://jeongukjae.github.io/tfds-korean/datasets/korean_wikipedia_corpus.html)
    • add namuwiki_corpus (https://jeongukjae.github.io/tfds-korean/datasets/namuwiki_corpus.html)
    Source code(tar.gz)
    Source code(zip)
  • 0.2.0(Jun 6, 2021)

    • add KLUE benchmark datasets
    • update dataset catalog (https://github.com/jeongukjae/tfds-korean/commit/eb1c72d0a716aba7326276e77e8e6f94976bb579, https://github.com/jeongukjae/tfds-korean/commit/614616b82d0bbdaecbc4ec50e0cfc67b78b646c2)
    • fix klue_ner supervised key bug (https://github.com/jeongukjae/tfds-korean/commit/10f765f01b9f3952e298395779dcf8efeefde93a)
    Source code(tar.gz)
    Source code(zip)
  • 0.1.3(May 29, 2021)

  • 0.1.2(May 25, 2021)

  • 0.1.1(Apr 30, 2021)

  • 0.1.0(Apr 29, 2021)

    • Add kowikitext and namuwikitext dataset
    • Add missing licenses and bibtex.
    • Add license section in catalog page.
    • Add example links in catalog page.
    Source code(tar.gz)
    Source code(zip)
Owner
Jeong Ukjae
Machine Learning Engineer
Jeong Ukjae
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. >>> import chazutsu >>> r = chazutsu.data

chakki 243 Dec 29, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

null 34 Nov 24, 2022
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 4, 2022
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 8, 2022
Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis

MLP Singer Official implementation of MLP Singer: Towards Rapid Parallel Korean Singing Voice Synthesis. Audio samples are available on our demo page.

Neosapience 103 Dec 23, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

null 74 Dec 13, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

null 94 Dec 8, 2022
Korean stereoypte detector with TUNiB-Electra and K-StereoSet

Korean Stereotype Detector Korean stereotype sentence classifier using K-StereoSet with TUNiB-Electra Web demo you can test this model easily in demo

Sae_Chan_Oh 11 Feb 18, 2022
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드

korean extractive summarization 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드 Leaderboard Notice Text Summarization with Pretrained Encoders에 나오는 bertsumext모델(ext

null 3 Aug 10, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 2, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding ?? Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

null 80 Jan 2, 2023
Utilize Korean BERT model in sentence-transformers library

ko-sentence-transformers 이 프로젝트는 KoBERT 모델을 sentence-transformers 에서 보다 쉽게 사용하기 위해 만들어졌습니다. Ko-Sentence-BERT-SKTBERT 프로젝트에서는 KoBERT 모델을 sentence-trans

Junghyun 40 Dec 20, 2022