ormsgpack
ormsgpack is a fast msgpack library for Python. It is a fork/reboot of orjson It serializes faster than msgpack-python and deserializes a bit slower (right now). It supports serialization of: dataclass, datetime, numpy, pydantic and UUID instances natively.
Its features and drawbacks compared to other Python msgpack libraries:
- serializes
dataclass
instances natively. - serializes
datetime
,date
, andtime
instances to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00" - serializes
numpy.ndarray
instances natively and faster. - serializes
pydantic.BaseModel
instances natively (disregards the configuration ATM). - serializes arbitrary types using a
default
hook
ormsgpack supports CPython 3.6, 3.7, 3.8, 3.9, and 3.10. ormsgpack does not support PyPy. Releases follow semantic versioning and serializing a new object type without an opt-in flag is considered a breaking change.
ormsgpack is licensed under both the Apache 2.0 and MIT licenses. The repository and issue tracker is github.com/aviramha/ormsgpack, and patches may be submitted there. There is a CHANGELOG available in the repository.
Usage
Install
To install a wheel from PyPI:
pip install --upgrade "pip>=19.3" # manylinux2014 support
pip install --upgrade ormsgpack
Notice that Linux environments with a pip
version shipped in 2018 or earlier must first upgrade pip
to support manylinux2014
wheels.
To build a wheel, see packaging.
Quickstart
This is an example of serializing, with options specified, and deserializing:
>>> import ormsgpack, datetime, numpy
>>> data = {
"type": "job",
"created_at": datetime.datetime(1970, 1, 1),
"status": "🆗",
"payload": numpy.array([[1, 2], [3, 4]]),
}
>>> ormsgpack.packb(data, option=ormsgpack.OPT_NAIVE_UTC | ormsgpack.OPT_SERIALIZE_NUMPY)
b'\x84\xa4type\xa3job\xaacreated_at\xb91970-01-01T00:00:00+00:00\xa6status\xa4\xf0\x9f\x86\x97\xa7payload\x92\x92\x01\x02\x92\x03\x04'
>>> ormsgpack.unpackb(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}
Serialize
def packb(
__obj: Any,
default: Optional[Callable[[Any], Any]] = ...,
option: Optional[int] = ...,
) -> bytes: ...
packb()
serializes Python objects to msgpack.
It natively serializes bytes
, str
, dict
, list
, tuple
, int
, float
, bool
, dataclasses.dataclass
, typing.TypedDict
, datetime.datetime
, datetime.date
, datetime.time
, uuid.UUID
, numpy.ndarray
, and None
instances. It supports arbitrary types through default
. It serializes subclasses of str
, int
, dict
, list
, dataclasses.dataclass
, and enum.Enum
. It does not serialize subclasses of tuple
to avoid serializing namedtuple
objects as arrays. To avoid serializing subclasses, specify the option ormsgpack.OPT_PASSTHROUGH_SUBCLASS
.
The output is a bytes
object containing UTF-8.
The global interpreter lock (GIL) is held for the duration of the call.
It raises MsgpackEncodeError
on an unsupported type. This exception message describes the invalid object with the error message Type is not JSON serializable: ...
. To fix this, specify default.
It raises MsgpackEncodeError
on a str
that contains invalid UTF-8.
It raises MsgpackEncodeError
if a dict
has a key of a type other than str
or bytes
, unless OPT_NON_STR_KEYS
is specified.
It raises MsgpackEncodeError
if the output of default
recurses to handling by default
more than 254 levels deep.
It raises MsgpackEncodeError
on circular references.
It raises MsgpackEncodeError
if a tzinfo
on a datetime object is unsupported.
MsgpackEncodeError
is a subclass of TypeError
. This is for compatibility with the standard library.
default
To serialize a subclass or arbitrary types, specify default
as a callable that returns a supported type. default
may be a function, lambda, or callable class instance. To specify that a type was not handled by default
, raise an exception such as TypeError
.
>>> import ormsgpack, decimal
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return str(obj)
raise TypeError
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"))
MsgpackEncodeError: Type is not JSON serializable: decimal.Decimal
>>> ormsgpack.packb(decimal.Decimal("0.0842389659712649442845"), default=default)
b'\xb80.0842389659712649442845'
>>> ormsgpack.packb({1, 2}, default=default)
ormsgpack.MsgpackEncodeError: Type is not msgpack serializable: set
The default
callable may return an object that itself must be handled by default
up to 254 times before an exception is raised.
It is important that default
raise an exception if a type cannot be handled. Python otherwise implicitly returns None
, which appears to the caller like a legitimate value and is serialized:
>>> import ormsgpack, json, rapidjson
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return str(obj)
>>> ormsgpack.unpackb(ormsgpack.packb({"set":{1, 2}}, default=default))
{'set': None}
option
To modify how data is serialized, specify option
. Each option
is an integer constant in ormspgack
. To specify multiple options, mask them together, e.g., option=ormspgack.OPT_NON_STR_KEYS | ormspgack.OPT_NAIVE_UTC
.
OPT_NAIVE_UTC
Serialize datetime.datetime
objects without a tzinfo
as UTC. This has no effect on datetime.datetime
objects that have tzinfo
set.
>>> import ormsgpack, datetime
>>> ormsgpack.unpackb(ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0),
))
"1970-01-01T00:00:00"
>>> ormsgpack.unpackb(ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0),
option=ormsgpack.OPT_NAIVE_UTC,
))
"1970-01-01T00:00:00+00:00"
OPT_NON_STR_KEYS
Serialize dict
keys of type other than str
. This allows dict
keys to be one of str
, int
, float
, bool
, None
, datetime.datetime
, datetime.date
, datetime.time
, enum.Enum
, and uuid.UUID
. For comparison, the standard library serializes str
, int
, float
, bool
or None
by default.
>>> import ormsgpack, datetime, uuid
>>> ormsgpack.packb(
{uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
option=ormsgpack.OPT_NON_STR_KEYS,
)
>>> ormsgpack.packb(
{datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
option=ormsgpack.OPT_NON_STR_KEYS | ormsgpack.OPT_NAIVE_UTC,
)
These types are generally serialized how they would be as values, e.g., datetime.datetime
is still an RFC 3339 string and respects options affecting it.
This option has the risk of creating duplicate keys. This is because non-str
objects may serialize to the same str
as an existing key, e.g., {"1970-01-01T00:00:00+00:00": true, datetime.datetime(1970, 1, 1, 0, 0, 0): false}
. The last key to be inserted to the dict
will be serialized last and a msgpack deserializer will presumably take the last occurrence of a key (in the above, false
). The first value will be lost.
OPT_OMIT_MICROSECONDS
Do not serialize the microsecond
field on datetime.datetime
and datetime.time
instances.
>>> import ormsgpack, datetime
>>> ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
)
>>> ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
option=ormsgpack.OPT_OMIT_MICROSECONDS,
)
OPT_PASSTHROUGH_DATACLASS
Passthrough dataclasses.dataclass
instances to default
. This allows customizing their output but is much slower.
>>> import ormsgpack, dataclasses
>>>
@dataclasses.dataclass
class User:
id: str
name: str
password: str
def default(obj):
if isinstance(obj, User):
return {"id": obj.id, "name": obj.name}
raise TypeError
>>> ormsgpack.packb(User("3b1", "asd", "zxc"))
b'\x83\xa2id\xa33b1\xa4name\xa3asd\xa8password\xa3zxc'
>>> ormsgpack.packb(User("3b1", "asd", "zxc"), option=ormsgpack.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not msgpack serializable: User
>>> ormsgpack.packb(
User("3b1", "asd", "zxc"),
option=ormsgpack.OPT_PASSTHROUGH_DATACLASS,
default=default,
)
b'\x82\xa2id\xa33b1\xa4name\xa3asd'
OPT_PASSTHROUGH_DATETIME
Passthrough datetime.datetime
, datetime.date
, and datetime.time
instances to default
. This allows serializing datetimes to a custom format, e.g., HTTP dates:
>>> import ormsgpack, datetime
>>>
def default(obj):
if isinstance(obj, datetime.datetime):
return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
raise TypeError
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)})
b'\x81\xaacreated_at\xb31970-01-01T00:00:00'
>>> ormsgpack.packb({"created_at": datetime.datetime(1970, 1, 1)}, option=ormsgpack.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not msgpack serializable: datetime.datetime
>>> ormsgpack.packb(
{"created_at": datetime.datetime(1970, 1, 1)},
option=ormsgpack.OPT_PASSTHROUGH_DATETIME,
default=default,
)
b'\x81\xaacreated_at\xbdThu, 01 Jan 1970 00:00:00 GMT'
This does not affect datetimes in dict
keys if using OPT_NON_STR_KEYS.
OPT_PASSTHROUGH_SUBCLASS
Passthrough subclasses of builtin types to default
.
>>> import ormsgpack
>>>
class Secret(str):
pass
def default(obj):
if isinstance(obj, Secret):
return "******"
raise TypeError
>>> ormsgpack.packb(Secret("zxc"))
b'\xa3zxc'
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not msgpack serializable: Secret
>>> ormsgpack.packb(Secret("zxc"), option=ormsgpack.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'\xa6******'
This does not affect serializing subclasses as dict
keys if using OPT_NON_STR_KEYS.
OPT_SERIALIZE_NUMPY
Serialize numpy.ndarray
instances. For more, see numpy.
OPT_SERIALIZE_PYDANTIC
Serialize pydantic.BaseModel
instances. Right now it ignores the config (str transformations), support might be added later.
OPT_UTC_Z
Serialize a UTC timezone on datetime.datetime
instances as Z
instead of +00:00
.
>>> import ormsgpack, datetime
>>> ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
)
b'"1970-01-01T00:00:00+00:00"'
>>> ormsgpack.packb(
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc),
option=ormsgpack.OPT_UTC_Z
)
b'"1970-01-01T00:00:00Z"'
Deserialize
def unpackb(__obj: Union[bytes, bytearray, memoryview], / , option=None) -> Any: ...
unpackb()
deserializes msgpack to Python objects. It deserializes to dict
, list
, int
, float
, str
, bool
, bytes
and None
objects.
bytes
, bytearray
, memoryview
input are accepted.
ormsgpack maintains a cache of map keys for the duration of the process. This causes a net reduction in memory usage by avoiding duplicate strings. The keys must be at most 64 bytes to be cached and 512 entries are stored.
The global interpreter lock (GIL) is held for the duration of the call.
It raises MsgpackDecodeError
if given an invalid type or invalid msgpack.
MsgpackDecodeError
is a subclass of ValueError
.
option
unpackb()
supports the OPT_NON_STR_KEYS
option, that is similar to original msgpack's strict_map_keys=False
. Be aware that this option is considered unsafe and disabled by default in msgpack due to possibility of HashDoS.
Types
dataclass
ormsgpack serializes instances of dataclasses.dataclass
natively. It serializes instances 40-50x as fast as other libraries and avoids a severe slowdown seen in other libraries compared to serializing dict
.
It is supported to pass all variants of dataclasses, including dataclasses using __slots__
, frozen dataclasses, those with optional or default attributes, and subclasses. There is a performance benefit to not using __slots__
.
Dataclasses are serialized as maps, with every attribute serialized and in the order given on class definition:
>>> import dataclasses, ormsgpack, typing
@dataclasses.dataclass
class Member:
id: int
active: bool = dataclasses.field(default=False)
@dataclasses.dataclass
class Object:
id: int
name: str
members: typing.List[Member]
>>> ormsgpack.packb(Object(1, "a", [Member(1, True), Member(2)]))
b'\x83\xa2id\x01\xa4name\xa1a\xa7members\x92\x82\xa2id\x01\xa6active\xc3\x82\xa2id\x02\xa6active\xc2'
Users may wish to control how dataclass instances are serialized, e.g., to not serialize an attribute or to change the name of an attribute when serialized. ormsgpack may implement support using the metadata mapping on field
attributes, e.g., field(metadata={"json_serialize": False})
, if use cases are clear.
Performance
--------------------------------------------------------------------------------- benchmark 'dataclass': 2 tests --------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_dataclass_ormsgpack 3.4248 (1.0) 7.7949 (1.0) 3.6266 (1.0) 0.3293 (1.0) 3.5815 (1.0) 0.0310 (1.0) 4;34 275.7434 (1.0) 240 1
test_dataclass_msgpack 140.2774 (40.96) 143.6087 (18.42) 141.3847 (38.99) 1.0038 (3.05) 141.1823 (39.42) 0.7304 (23.60) 2;1 7.0729 (0.03) 8 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
datetime
ormsgpack serializes datetime.datetime
objects to RFC 3339 format, e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and compatible with isoformat()
in the standard library.
>>> import ormsgpack, datetime, zoneinfo
>>> ormsgpack.packb(
datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo('Australia/Adelaide'))
)
>>> ormsgpack.unpackb(_)
"2018-12-01T02:03:04.000009+10:30"
>>> ormsgpack.packb(
datetime.datetime.fromtimestamp(4123518902).replace(tzinfo=datetime.timezone.utc)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02+00:00"
>>> ormsgpack.packb(
datetime.datetime.fromtimestamp(4123518902)
)
>>> ormsgpack.unpackb(_)
"2100-09-01T21:55:02"
datetime.datetime
supports instances with a tzinfo
that is None
, datetime.timezone.utc
, a timezone instance from the python3.9+ zoneinfo
module, or a timezone instance from the third-party pendulum
, pytz
, or dateutil
/arrow
libraries.
datetime.time
objects must not have a tzinfo
.
>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.time(12, 0, 15, 290))
>>> ormsgpack.unpackb(_)
"12:00:15.000290"
datetime.date
objects will always serialize.
>>> import ormsgpack, datetime
>>> ormsgpack.packb(datetime.date(1900, 1, 2))
>>> ormsgpack.unpackb(_)
"1900-01-02"
Errors with tzinfo
result in MsgpackEncodeError
being raised.
It is faster to have ormsgpack serialize datetime objects than to do so before calling packb()
. If using an unsupported type such as pendulum.datetime
, use default
.
To disable serialization of datetime
objects specify the option ormsgpack.OPT_PASSTHROUGH_DATETIME
.
To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option ormsgpack.OPT_UTC_Z
.
To assume datetimes without timezone are UTC, se the option ormsgpack.OPT_NAIVE_UTC
.
enum
ormsgpack serializes enums natively. Options apply to their values.
>>> import enum, datetime, ormsgpack
>>>
class DatetimeEnum(enum.Enum):
EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> ormsgpack.packb(DatetimeEnum.EPOCH)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00"
>>> ormsgpack.packb(DatetimeEnum.EPOCH, option=ormsgpack.OPT_NAIVE_UTC)
>>> ormsgpack.unpackb(_)
"1970-01-01T00:00:00+00:00"
Enums with members that are not supported types can be serialized using default
:
>>> import enum, ormsgpack
>>>
class Custom:
def __init__(self, val):
self.val = val
def default(obj):
if isinstance(obj, Custom):
return obj.val
raise TypeError
class CustomEnum(enum.Enum):
ONE = Custom(1)
>>> ormsgpack.packb(CustomEnum.ONE, default=default)
>>> ormsgpack.unpackb(_)
1
float
ormsgpack serializes and deserializes double precision floats with no loss of precision and consistent rounding.
int
ormsgpack serializes and deserializes 64-bit integers by default. The range supported is a signed 64-bit integer's minimum (-9223372036854775807) to an unsigned 64-bit integer's maximum (18446744073709551615).
numpy
ormsgpack natively serializes numpy.ndarray
and individual numpy.float64
, numpy.float32
, numpy.int64
, numpy.int32
, numpy.int8
, numpy.uint64
, numpy.uint32
, and numpy.uint8
instances. Arrays may have a dtype
of numpy.bool
, numpy.float32
, numpy.float64
, numpy.int32
, numpy.int64
, numpy.uint32
, numpy.uint64
, numpy.uintp
, or numpy.intp
. ormsgpack is faster than all compared libraries at serializing numpy instances. Serializing numpy data requires specifying option=ormsgpack.OPT_SERIALIZE_NUMPY
.
>>> import ormsgpack, numpy
>>> ormsgpack.packb(
numpy.array([[1, 2, 3], [4, 5, 6]]),
option=ormsgpack.OPT_SERIALIZE_NUMPY,
)
>>> ormsgpack.unpackb(_)
[[1,2,3],[4,5,6]]
The array must be a contiguous C array (C_CONTIGUOUS
) and one of the supported datatypes.
If an array is not a contiguous C array or contains an supported datatype, ormsgpack falls through to default
. In default
, obj.tolist()
can be specified. If an array is malformed, which is not expected, ormsgpack.MsgpackEncodeError
is raised.
Performance
---------------------------------------------------------------------------------- benchmark 'numpy float64': 2 tests ---------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[float64] 77.9625 (1.0) 85.2507 (1.0) 79.0326 (1.0) 1.9043 (1.0) 78.5505 (1.0) 0.7408 (1.0) 1;1 12.6530 (1.0) 13 1
test_numpy_msgpack[float64] 511.5176 (6.56) 606.9395 (7.12) 559.0017 (7.07) 44.0661 (23.14) 572.5499 (7.29) 81.2972 (109.75) 3;0 1.7889 (0.14) 5 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------- benchmark 'numpy int32': 2 tests -------------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int32] 197.8751 (1.0) 210.3111 (1.0) 201.1033 (1.0) 5.1886 (1.0) 198.8518 (1.0) 3.8297 (1.0) 1;1 4.9726 (1.0) 5 1
test_numpy_msgpack[int32] 1,363.8515 (6.89) 1,505.4747 (7.16) 1,428.2127 (7.10) 53.4176 (10.30) 1,425.3516 (7.17) 72.8064 (19.01) 2;0 0.7002 (0.14) 5 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------- benchmark 'numpy int8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[int8] 107.8013 (1.0) 113.7336 (1.0) 109.0364 (1.0) 1.7805 (1.0) 108.3574 (1.0) 0.4066 (1.0) 1;2 9.1712 (1.0) 10 1
test_numpy_msgpack[int8] 685.4149 (6.36) 703.2958 (6.18) 693.2396 (6.36) 7.9572 (4.47) 691.5435 (6.38) 14.4142 (35.45) 1;0 1.4425 (0.16) 5 1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------- benchmark 'numpy npbool': 2 tests --------------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[npbool] 87.9005 (1.0) 89.5460 (1.0) 88.7928 (1.0) 0.5098 (1.0) 88.8508 (1.0) 0.6609 (1.0) 4;0 11.2622 (1.0) 12 1
test_numpy_msgpack[npbool] 1,095.0599 (12.46) 1,176.3442 (13.14) 1,120.5916 (12.62) 32.9993 (64.73) 1,110.4216 (12.50) 38.4189 (58.13) 1;0 0.8924 (0.08) 5 1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------- benchmark 'numpy uint8': 2 tests ---------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_numpy_ormsgpack[uint8] 133.1743 (1.0) 134.7246 (1.0) 134.2793 (1.0) 0.4946 (1.0) 134.3120 (1.0) 0.4492 (1.0) 1;1 7.4472 (1.0) 8 1
test_numpy_msgpack[uint8] 727.1393 (5.46) 824.8247 (6.12) 775.7032 (5.78) 34.9887 (70.73) 775.9595 (5.78) 36.2824 (80.78) 2;0 1.2892 (0.17) 5 1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
uuid
ormsgpack serializes uuid.UUID
instances to RFC 4122 format, e.g., "f81d4fae-7dec-11d0-a765-00a0c91e6bf6".
>>> import ormsgpack, uuid
>>> ormsgpack.packb(uuid.UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6'))
>>> ormsgpack.unpackb(_)
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6"
>>> ormsgpack.packb(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
>>> ormsgpack.unpackb(_)
"886313e1-3b8a-5372-9b90-0c9aee199e5d"
Pydantic
ormsgpack serializes pydantic.BaseModel
instances natively. Currently it ignores pydantic.BaseModel.Config
.
Performance
-------------------------------------------------------------------------------- benchmark 'pydantic': 2 tests ---------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_pydantic_ormsgpack 4.3918 (1.0) 12.6521 (1.0) 4.8550 (1.0) 1.1455 (3.98) 4.6101 (1.0) 0.0662 (1.0) 11;24 205.9727 (1.0) 204 1
test_pydantic_msgpack 124.5500 (28.36) 125.5427 (9.92) 125.0582 (25.76) 0.2877 (1.0) 125.0855 (27.13) 0.2543 (3.84) 2;0 7.9963 (0.04) 8 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Latency
Graphs
Data
----------------------------------------------------------------------------- benchmark 'canada packb': 2 tests ------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[canada] 3.5302 (1.0) 3.8939 (1.0) 3.7319 (1.0) 0.0563 (1.0) 3.7395 (1.0) 0.0484 (1.0) 56;22 267.9571 (1.0) 241 1
test_msgpack_packb[canada] 8.8642 (2.51) 14.0432 (3.61) 9.3660 (2.51) 0.5649 (10.03) 9.2983 (2.49) 0.0982 (2.03) 3;11 106.7691 (0.40) 106 1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------- benchmark 'canada unpackb': 2 tests --------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_msgpack_unpackb[canada] 10.1176 (1.0) 62.0466 (1.18) 33.4806 (1.0) 18.8279 (1.0) 46.6582 (1.0) 38.5921 (1.02) 30;0 29.8680 (1.0) 67 1
test_ormsgpack_unpackb[canada] 11.3992 (1.13) 52.6587 (1.0) 34.1842 (1.02) 18.9461 (1.01) 47.6456 (1.02) 37.8024 (1.0) 8;0 29.2533 (0.98) 20 1
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------- benchmark 'citm_catalog packb': 2 tests -----------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[citm_catalog] 1.8024 (1.0) 2.1259 (1.0) 1.9487 (1.0) 0.0346 (1.0) 1.9525 (1.0) 0.0219 (1.0) 79;60 513.1650 (1.0) 454 1
test_msgpack_packb[citm_catalog] 3.4195 (1.90) 3.8128 (1.79) 3.6928 (1.90) 0.0535 (1.55) 3.7009 (1.90) 0.0250 (1.14) 47;49 270.7958 (0.53) 257 1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------ benchmark 'citm_catalog unpackb': 2 tests ------------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[citm_catalog] 5.6986 (1.0) 46.1843 (1.0) 14.2491 (1.0) 15.9791 (1.0) 6.1051 (1.0) 0.3074 (1.0) 5;5 70.1798 (1.0) 23 1
test_msgpack_unpackb[citm_catalog] 7.2600 (1.27) 56.6642 (1.23) 16.4095 (1.15) 16.3257 (1.02) 7.7364 (1.27) 0.4944 (1.61) 28;29 60.9404 (0.87) 125 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------- benchmark 'github packb': 2 tests -----------------------------------------------------------------------------------
Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS (Kops/s) Rounds Iterations
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[github] 73.0000 (1.0) 215.9000 (1.0) 80.4826 (1.0) 4.8889 (1.0) 80.3000 (1.0) 1.1000 (1.83) 866;1118 12.4250 (1.0) 6196 1
test_msgpack_packb[github] 103.8000 (1.42) 220.8000 (1.02) 112.8049 (1.40) 4.9686 (1.02) 113.0000 (1.41) 0.6000 (1.0) 1306;1560 8.8649 (0.71) 7028 1
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------- benchmark 'github unpackb': 2 tests -----------------------------------------------------------------------------------
Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS (Kops/s) Rounds Iterations
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[github] 201.3000 (1.0) 318.5000 (1.0) 219.0861 (1.0) 6.7340 (1.0) 219.1000 (1.0) 1.2000 (1.0) 483;721 4.5644 (1.0) 3488 1
test_msgpack_unpackb[github] 289.8000 (1.44) 436.0000 (1.37) 314.9631 (1.44) 9.4130 (1.40) 315.1000 (1.44) 2.3000 (1.92) 341;557 3.1750 (0.70) 2477 1
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------- benchmark 'twitter packb': 2 tests ---------------------------------------------------------------------------------------
Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_packb[twitter] 820.7000 (1.0) 2,945.2000 (2.03) 889.3791 (1.0) 78.4139 (2.43) 884.2000 (1.0) 12.5250 (1.0) 4;76 1,124.3799 (1.0) 809 1
test_msgpack_packb[twitter] 1,209.3000 (1.47) 1,451.2000 (1.0) 1,301.3615 (1.46) 32.2147 (1.0) 1,306.7000 (1.48) 14.1000 (1.13) 118;138 768.4260 (0.68) 592 1
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------ benchmark 'twitter unpackb': 2 tests -----------------------------------------------------------------------------
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
test_ormsgpack_unpackb[twitter] 2.7097 (1.0) 41.1530 (1.0) 3.2721 (1.0) 3.5860 (1.03) 2.8868 (1.0) 0.0614 (1.32) 4;38 305.6098 (1.0) 314 1
test_msgpack_unpackb[twitter] 3.8079 (1.41) 42.0617 (1.02) 4.4459 (1.36) 3.4893 (1.0) 4.1097 (1.42) 0.0465 (1.0) 2;54 224.9267 (0.74) 228 1
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Reproducing
The above was measured using Python 3.7.9 on Azure Linux VM (x86_64) with ormsgpack 0.2.1 and msgpack 1.0.2.
The latency results can be reproduced using ./scripts/benchmark.sh
and graphs using pytest --benchmark-histogram benchmarks/bench_*
.
Questions
Why can't I install it from PyPI?
Probably pip
needs to be upgraded to version 20.3 or later to support the latest manylinux_x_y or universal2 wheel formats.
Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?
No. This requires a schema specifying what types are expected and how to handle errors etc. This is addressed by data validation libraries a level above this.
Will it support PyPy?
If someone implements it well.
Packaging
To package ormsgpack requires Rust on the nightly channel and the maturin build tool. maturin can be installed from PyPI or packaged as well. This is the simplest and recommended way of installing from source, assuming rustup
is available from a package manager:
rustup default nightly
pip wheel --no-binary=ormsgpack ormsgpack
This is an example of building a wheel using the repository as source, rustup
installed from upstream, and a pinned version of Rust:
pip install maturin
curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly-2021-05-25 --profile minimal -y
export RUSTFLAGS="-C target-cpu=k8"
maturin build --no-sdist --release --strip --manylinux off
ls -1 target/wheels
Problems with the Rust nightly channel may require pinning a version. nightly-2021-05-25
is known to be ok.
ormsgpack is tested for amd64 and aarch64 on Linux, macOS, and Windows. It may not work on 32-bit targets. It has recommended RUSTFLAGS
specified in .cargo/config
so it is recommended to either not set RUSTFLAGS
or include these options.
There are no runtime dependencies other than libc.
License
orjson was written by ijl <[email protected]>, copyright 2018 - 2021, licensed under both the Apache 2 and MIT licenses.
ormsgpack was forked from orjson and is maintained by Aviram Hassan <[email protected]>, licensed same as orjson.